REDUCTIONS
Reduction

Reduce vector to a single value
- Via an associative operator (+, *, min/max, AND/OR, ...)
- CPU: sequential implementation

  ```
  for(int i = 0, i < n, ++i) ...
  ```
- GPU: “tree”-based implementation

![Diagram of a reduction tree]

```
Serial Reduction

// reduction via serial iteration
float sum(float *data, int n) {
    float result = 0;
    for(int i = 0; i < n; ++i) {
        result += data[i];
    }
    return result;
}
Parallel Reduction – Interleaved

Values (in shared memory)

10 1 8 -1 0 -2 3 5 -2 -3 2 7 0 11 0 2

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread IDs

Thread IDs

Thread IDs

Thread IDs
CUDA Reduction

```
__global__ void block_sum(float *input,
 float *results,
 size_t n)
{
 extern __shared__ float sdata[];
 int i = ..., int tx = threadIdx.x;

 // load input into __shared__ memory
 float x = 0;
 if(i < n)
 x = input[i];
 sdata[tx] = x;
 __syncthreads();
```
CUDA Reduction

// block-wide reduction in __shared__ mem
for(int offset = blockDim.x / 2;
    offset > 0;
    offset >>= 1)
{
    if(tx < offset)
    {
        // add a partial sum upstream to our own
        sdata[tx] += sdata[tx + offset];
    }
    __syncthreads();
}
CUDA Reduction

    // finally, thread 0 writes the result
    if(threadIdx.x == 0)
    {
        // note that the result is per-block
        // not per-thread
        results[blockIdx.x] = sdata[0];
    }
}
CUDA Reduction

// global sum via per-block reductions
float sum(float *d_input, size_t n)
{
    size_t block_size = ... , num_blocks = ...;

    // allocate per-block partial sums
    // plus a final total sum
    float *d_sums = 0;
    cudaMalloc((void**)&d_sums,
               sizeof(float) * (num_blocks + 1));
    ...
}
CUDA Reduction

// reduce per-block partial sums
int smem_sz = block_size*sizeof(float);
block_sum<<<num_blocks,block_size,smem_sz>>>(
    d_input, d_sums, n);

// reduce partial sums to a total sum
block_sum<<<1,block_size,smem_sz>>>(
    d_sums, d_sums + num_blocks, num_blocks);

// copy result to host
float result = 0;
Caveat Reductor

- What happens if there are too many partial sums to fit into \texttt{__shared__} memory in the second stage?

- What happens if the temporary storage is too big?

- Give each thread more work in the first stage
  - \texttt{Sum is associative \& commutative}
  - Order doesn’t matter to the result
  - We can schedule the sum any way we want
    → serial accumulation before block-wide reduction

- Exercise left to the hacker
Parallel Reduction Complexity

- **Log($N$)** parallel steps, each step $S$ does $N/2^S$ independent ops
  - **Step Complexity** is $O(\log N)$

- For $N=2^D$, performs $\sum_{S\in[1..D]} 2^{D-S} = N-1$ operations
  - **Work Complexity** is $O(N)$ – It is work-efficient
    - i.e. does not perform more operations than a sequential algorithm

- With $P$ threads physically in parallel ($P$ processors),
  - **time complexity** is $O(N/P + \log N)$
    - Compare to $O(N)$ for sequential reduction
PERFORMANCE CONSIDERATIONS
But First!

- Always measure where your time is going!
  - Even if you think you know where it is going
  - Start coarse, go fine-grained as need be

- Keep in mind Amdahl’s Law when optimizing any part of your code
  - Don’t continue to optimize once a part is only a small fraction of overall execution time
Performance Considerations

- Memory Coalescing
- Shared Memory Bank Conflicts
- Occupancy

Things left out due to time:
- Kernel launch overheads
- Loop iteration count divergence
MEMORY COALESCING
Memory Coalescing

- Off-chip memory is accessed in chunks
  - Even if you read only a single word
  - If you don’t use whole chunk, bandwidth is wasted
- Chunks are aligned to multiples of 32/64/128 bytes
  - Unaligned accesses will cost more
Threads 0-15 access 4-byte words at addresses 116-176

- Thread 0 is lowest active, accesses address 116
- 128-byte segment: 0-127
Threads 0-15 access 4-byte words at addresses 116-176

- Thread 0 is lowest active, accesses address 116
- 128-byte segment: 0-127 (reduce to 64B)
Threads 0-15 access 4-byte words at addresses 116-176

- Thread 0 is lowest active, accesses address 116
- 128-byte segment: 0-127 (reduce to 32B)
Threads 0-15 access 4-byte words at addresses 116-176

- Thread 3 is lowest active, accesses address 128
- 128-byte segment: 128-255
Threads 0-15 access 4-byte words at addresses 116-176

- Thread 3 is lowest active, accesses address 128
- 128-byte segment: 128-255 *(reduce to 64B)*
Consider the stride of your accesses

```c
__global__ void foo(int* input, float3* input2)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 // Stride 1
 int a = input[i];
 // Stride 2, half the bandwidth is wasted
 int b = input[2*i];
 // Stride 3, 2/3 of the bandwidth wasted
 float c = input2[i].x;
}
```
Example: Array of Structures (AoS)

```c
struct record {
 int key;
 int value;
 int flag;
};

record *d_records;
cudaMalloc((void**)&d_records, ...);
```
Example: Structure of Arrays (SoA)

```c
struct SoA
{
 int * keys;
 int * values;
 int * flags;
};

SoA d_SoA_data;
cudaMalloc((void**)&d_SoA_data.keys, ...);
cudaMalloc((void**)&d_SoA_data.values, ...);
cudaMalloc((void**)&d_SoA_data.flags, ...);
```
Example: SoA vs. AoS

```c
__global__ void bar(record *AoS_data,
 SoA SoA_data)
{
 int i = blockDim.x * blockIdx.x
 + threadIdx.x;
 // AoS wastes bandwidth
 int key = AoS_data[i].key;
 // SoA efficient use of bandwidth
 int key_better = SoA_data.keys[i];
}
```
Memory Coalescing

- Structure of array is often better than array of structures
  - Very clear win on regular, stride 1 access patterns
  - Unpredictable or irregular access patterns are case-by-case
SHARED MEMORY BANK
CONFLICTS
Shared Memory

- Shared memory is banked
  - Only matters for threads within a warp
  - Full performance with some restrictions
  - Threads can each access different banks
  - Or can all access the same value

- Consecutive words are in different banks

- If two or more threads access the same bank but different value, get bank conflicts
Bank Addressing Examples

No Bank Conflicts

Thread 0 → Bank 0
Thread 1 → Bank 1
Thread 2 → Bank 2
Thread 3 → Bank 3
Thread 4 → Bank 4
Thread 5 → Bank 5
Thread 6 → Bank 6
Thread 7 → Bank 7

No Bank Conflicts

Thread 0 → Bank 0
Thread 1 → Bank 1
Thread 2 → Bank 2
Thread 3 → Bank 3
Thread 4 → Bank 4
Thread 5 → Bank 5
Thread 6 → Bank 6
Thread 7 → Bank 7

Thread 15 → Bank 15
Bank Addressing Examples

2-way Bank Conflicts

Thread 0 → Bank 0
Thread 1 → Bank 1
Thread 2 → Bank 2
Thread 3 → Bank 3
Thread 4 → Bank 4
Thread 8 → Bank 5
Thread 9 → Bank 6
Thread 10 → Bank 7
Thread 11 → Bank 15

8-way Bank Conflicts

Thread 0 → Bank 0
Thread 1 → Bank 1
Thread 2 → Bank 2
Thread 3 → Bank 3
Thread 4 → Bank 4
Thread 5 → Bank 5
Thread 6 → Bank 6
Thread 7 → Bank 7
Thread 15 → Bank 15
Trick to Assess Impact On Performance

- Change all SMEM reads to the same value
  - All broadcasts = no conflicts
  - Will show how much performance could be improved by eliminating bank conflicts

- The same doesn’t work for SMEM writes
  - So, replace SMEM array indices with `threadIdx.x`
  - Can also be done to the reads
Reminder: Thread Scheduling

- SM implements zero-overhead warp scheduling
  - At any time, only one of the warps is executed by SM*
  - Warps whose next instruction has its inputs ready for consumption are eligible for execution
  - Eligible Warps are selected for execution on a prioritized scheduling policy
  - All threads in a warp execute the same instruction when selected

\[\text{TB} = \text{Thread Block}, \ W = \text{Warp}\]
Thread Scheduling

- What happens if all warps are stalled?
  - No instruction issued $\rightarrow$ performance lost

- Most common reason for stalling?
  - Waiting on global memory

- If your code reads global memory every couple of instructions
  - You should try to maximize occupancy
What determines occupancy?

- Register usage per thread & shared memory per thread block
Pool of registers and shared memory per SM

- Each thread block grabs registers & shared memory
- If one or the other is fully utilized -> no more thread blocks
Resource Limits (2)

- Can only have 8 thread blocks per SM
  - If they’re too small, can’t fill up the SM
  - Need 128 threads / TB (gt200), 192 thread/ TB (gf100)

- Higher occupancy has diminishing returns for hiding latency
Hiding Latency with more threads

Throughput, 32-bit words
How do you know what you’re using?

- Use `nvcc -Xptxas -v` to get register and shared memory usage.
- Plug those numbers into CUDA Occupancy Calculator.
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

### Varying Block Size

![Graph showing varying block sizes and occupancy.]

### Varying Register Count

![Graph showing varying register counts and occupancy.]

### Varying Shared Memory Usage

![Graph showing varying shared memory usage and occupancy.]

### GPU Occupancy Data Displayed Here and in the Graphs

1. **Active Threads per Multiprocessor**: N/A
2. **Active Warps per Multiprocessor**: N/A
3. **Active Thread Blocks per Multiprocessor**: N/A
4. **Occupancy of each Multiprocessor**: N/A

### Physical Limits for GPU Compute Capability

- **Threads per Warp**: N/A
- **Warps per Multiprocessor**: N/A
- **Threads per Multiprocessor**: N/A
- **Thread Blocks per Multiprocessor**: N/A
- **Total # of 32-bit registers per Multiprocessor**: N/A
- **Register allocation unit size**: N/A
- **Register allocation granularity**: N/A
- **Shared Memory per Multiprocessor (bytes)**: N/A
- **Shared Memory Allocation unit size**: N/A
- **Warp allocation granularity (for register allocation)**: N/A

### Allocation Per Thread Block

- **Warps**: N/A
- **Registers**: N/A
- **Shared Memory**: N/A

### Maximum Thread Blocks per Multiprocessor

- **Blocks Limited by Max Warps / Blocks per Multiprocessor**: N/A
- **Blocks Limited by Registers per Multiprocessor**: N/A
- **Blocks Limited by Shared Memory per Multiprocessor**: N/A
- **Thread Block Limit Per Multiprocessor highlighted**: N/A

### CUDA Occupancy Calculator

**Version**: 2.0

**Copyright and License**
CUDA GPU Occupancy Calculator

Just follow steps 1, 2, and 3 below! (or click here for help)

1.) Select Compute Capability (click): 1.3

2.) Enter your resource usage:
   - Threads Per Block: 128
   - Registers Per Thread: 25
   - Shared Memory Per Block (bytes): 640

(Don't edit anything below this line)

3.) GPU Occupancy Data is displayed here and in the graphs:
3.) GPU Occupancy Data is displayed here and in the graphs:

Active Threads per Multiprocessor	512
Active Warps per Multiprocessor	16
Active Thread Blocks per Multiprocessor	4
Occupancy of each Multiprocessor	50%

Physical Limits for GPU Compute Capability:

Threads per Warp	32
Warps per Multiprocessor	32
Threads per Multiprocessor	1024
Thread Blocks per Multiprocessor	8
Total # of 32-bit registers per Multiprocessor	16384
Register allocation unit size	512
Register allocation granularity	block
Shared Memory per Multiprocessor (bytes)	16384
Shared Memory Allocation unit size	512
Warp allocation granularity (for register allocation)	2

Allocation Per Thread Block

Warps	4
Registers	3584
Shared Memory	1024

These data are used in computing the occupancy data in blue.

Maximum Thread Blocks Per Multiprocessor

Limited by Max Warps / Blocks per Multiprocessor	8
Limited by Registers per Multiprocessor	4
Limited by Shared Memory per Multiprocessor	16
Thread Block Limit Per Multiprocessor highlighted	RED
The other data points represent the range of possible block sizes, register counts, and shared memory allocation.
How to influence how many registers you use

- Pass option `-maxrregcount=X` to nvcc

- This isn’t magic, won’t get occupancy for free

- Use this very carefully when you are right on the edge
Performance Considerations

- Measure, measure, then measure some more!
- Once you identify bottlenecks, apply judicious tuning
  - What is most important depends on your program
  - You’ll often have a series of bottlenecks, where each optimization gives a smaller boost than expected
Questions?
Backup
Control Flow

- Instructions are issued per 32 threads (warp)
- Divergent branches:
  - Threads within a single warp take different paths
    - if-else, ...
  - Different execution paths within a warp are serialized
- Different warps can execute different code with no impact on performance
__global__ void per_thread_sum(int *indices,
                             float *data,
                             float *sums)
{
    ...

    // number of loop iterations is data dependent
    for(int j=indices[i]; j<indices[i+1]; j++)
    {
        sum += data[j];
    }
    sums[i] = sum;
}
Iteration Divergence

- A single thread can drag a whole warp with it for a long time
- Know your data patterns
- If data is unpredictable, try to flatten peaks by letting threads work on multiple data items
Shared Memory

**Uses:**
- Inter-thread communication within a block
- Cache data to reduce global memory accesses
- Use it to avoid non-coalesced access

**Organization:**
- 16 banks, 32-bit wide banks (Tesla)
- 32 banks, 32-bit wide banks (Fermi)
- Successive 32-bit words belong to different banks

**Performance:**
- 32 bits per bank per 2 clocks per multiprocessor
- smem accesses are per **16**-threads (half-warp)
- **Serialization:** if \( n \) threads (out of 16) access the same bank, \( n \) accesses are executed serially
- **Broadcast:** \( n \) threads access the same word in one fetch
__global__ void per_thread_sum(...) 
{
    while(!done)
    {
        for(int j=indices[i];
            j<min(indices[i+1],indices[i]+MAX_ITER);
            j++)
        {
            ...
        }
    }
}