Recap

- CUDA: Heterogeneous Parallel Computing
- Utilize the power of the CPU and GPU
- Split a problem into serial sections and parallel sections
- Serial sections get executed on the CPU as **host** code
- Parallel sections get executed on the GPU by launching a **kernel**
// this function will be our running example today
void stencil(int n, int radius, float* w, float* x, float* y)
{
 for(int i = 0; i < n; i++)
 {
 float sum = 0.f;
 if (radius < i && i < n - radius)
 {
 for(int j = -radius; j < radius; j++)
 sum += w[j+radius]*x[i+j];
 }
 y[i] = sum;
 }
}
Recap: Stencil Kernel [1/3]

```c
__global__ void stencil(int n, int radius, float* w, float* x, float* y)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    float sum = 0.f;
    if (radius < i && i < n - radius) {
        for(int j = -radius; j < radius; j++)
            sum += w[j+radius]*x[i+j];
    }
    y[i] = sum;
}

int main()
{
    ...
    int nbblocks = (n + 255)/256;
    stencil<<<nbblocks, 256>>>(n, radius, d_w, d_x, d_y);
    ...
}
```
Recap: Stencil Kernel

```c
int main()
{
    // allocate and initialize host (CPU) memory
    ...
    // allocate device (GPU) memory
    float *d_w, *d_x, *d_y;
    cudaMalloc((void**)&d_x, n * sizeof(float));
    cudaMalloc((void**)&d_y, n * sizeof(float));
    cudaMalloc((void**)&d_w, 2*radius * sizeof(float));

    // copy x and w from host memory to device memory
    cudaMemcpy(d_x, x, n*sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(d_w, w, 2*radius*sizeof(float), cudaMemcpyHostToDevice);

    // invoke parallel stencil kernel with 256 threads / block
    int nbblocks = (n + 255)/256;
    stencil<<<nbblocks, 256>>>(n, radius, d_w, d_x, d_y);
```
// invoke parallel stencil kernel with 256 threads / block
int nblocks = (n + 255)/256;
stencil<<<nblocks, 256>>>(n, radius, d_w, d_x, d_y);

// copy y from device (GPU) memory to host (CPU) memory
cudaMemcpy(y, d_y, n*sizeof(float), cudaMemcpyDeviceToHost);

// do something with the result...

// free device (GPU) memory
cudaFree(d_x);
cudaFree(d_y);
cudaFree(d_w);

 return 0;
}
System Organisation

Device (Global) Memory (GDDRAM)

PCIe Bus

CPU

Cache

Host Memory (DRAM)

Core

Core

GPU
Memory Capacities

- Device (Global) Memory (GDDRAM): 1 - 6 GB
- Host Memory (DRAM): 16+ GB
- PCIe Bus

- SMEM: 48 KB

GPU

CPU
Where to keep what data?

Device (Global) Memory (GDDRAM) <-> PCIe Bus <-> Host Memory (DRAM)

Most used data

Working copy

Least used data & buffers for exchange with other nodes
Minimize CPU<->GPU Data Transfers

- ~6GB/sec between CPU and GPU
- ~160GB/sec to GPU memory
- Transfers back and forth between CPU and GPU quickly become prohibitively expensive!
- Do as much as possible on the GPU
Iterative solver with boundary conditions

```c
int main()
{
    ...

    // invoke relaxation step
    relax_step<<<nb_relax, bs_relax>>>(domain_size, d_weights, d_copy_A, d_copy_B);
    // implicit synchronization between all threads happens at the end of each kernel
    // now enforce boundary conditions
    enforce_boundary<<<nb_bound, bs_bound>>>(domain_size, d_copy_B);
    // invoke relaxation step again, but now input and output have been switched
    relax_step<<<nb_relax, bs_relax>>>(domain_size, d_weights, d_copy_B, d_copy_A);

```
Example of Keeping Data on GPU (2)

- Input is too big for GPU memory

```c
int main()
{
  // input is too big for GPU memory or streaming
  float* big_x = ...;
  // allocate device (GPU) memory
  float *d_x, *d_partial_results;
  cudaMalloc((void**)&d_x, small_num * sizeof(float));
  cudaMalloc((void**)&d_partial_results, small_num * sizeof(float));
  for(int i=0; i < big_num; i+= small_num)
  {
    // copy x and y from host memory to device memory
    cudaMemcpy(d_x, &big_x[i], small_num*sizeof(float), cudaMemcpyHostToDevice);
    // invoke kernel that accumulates results
    some_kernel<<<nb, bs>>>(n, d_x, d_partial_results);
  }
}
Recall CUDA Thread Hierarchy

- Threads are grouped into **blocks**
- **Blocks** have fast communication through shared memory (variables prefixed with `__shared__`)
- Blocks have very fast synchronization with `__syncthreads()`
Block Synchronization

A call to `__syncthreads()` ensures:

- Every thread in the threadblock has arrived at this point in the program
- All loads have completed
- All stores have completed

Can hang your program if used within an `if`, `switch` or loop statement

Unless you can guarantee that all threads in the threadblock will reach this point in the program
A Common Programming Strategy

- Global memory resides in device memory (DRAM)
  - Much slower access than shared memory
- **Tile data** to take advantage of fast shared memory:
  - Generalize from *stencil* example
  - Divide and conquer
A Common Programming Strategy

- **Partition** data into **subsets** that fit into **shared memory**
A Common Programming Strategy

Handle each data subset with one thread block
A Common Programming Strategy

Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism.
A Common Programming Strategy

Perform the computation on the subset from **shared memory**
A Common Programming Strategy

Copy the result from shared memory back to global memory
// 1D stencil example
// compute result[i] = sum(input[i+j]*weight[j] for j in …)
__global__ void stencil(int n, int radius, float* w, float* x, float* y)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    float sum = 0.f;
    if (radius < i && i < n - radius)
    {
        for(int j = -radius; j < radius; j++)
            sum += w[j+radius]*x[i+j];
    }
    y[i] = sum;
}
Example – shared variables

// 1D stencil example
// compute result[i] = sum(input[i+j]*weight[j] for j in ...)
__global__ void stencil(int n, int radius, float* w, float* x, float* y)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    float sum = 0.f;
    if (radius < i && i < n - radius)
    {
        // what are the bandwidth requirements for this loop?
        for(int j = -radius; j < radius; j++)
            sum += w[j+radius]*x[i+j];

        } // end for loop
    y[i] = sum;
} // end stencil function

4*radius loads
Example – shared variables

// 1D stencil example
// compute result[i] = sum(input[i+j]*weight[j] for j in ...)
__global__ void stencil(int n, int radius, float* w, float* x, float* y)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    float sum = 0.f;
    if (radius < i && i < n - radius)
    {
        // Idea: Eliminate redundant loads by sharing data
        for(int j = -radius; j < radius; j++)
            sum += w[j+radius]*x[i+j];
    }
    y[i] = sum;
}
Example – shared variables

```c
__global__ void stencil(int n, int radius, float* w, float* x, float* y)
{
 __shared__ float s_x[BLOCK_DIM + 2*MAX_RADIUS];
 __shared__ float s_w[2*MAX_RADIUS];
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 // copy data cooperatively into shared memory
 if(threadIdx.x < 2*radius)
 s_w[threadIdx.x] = w[threadIdx.x];
 if(radius < i)
 s_x[threadIdx.x] = x[i - radius];
 if(i < n - radius && threadIdx.x + 2*radius > blockDim.x-1)
 s_x[threadIdx.x + 2*radius] = x[i + radius];
 // avoid race condition: ensure all loads
 // complete before continuing
 __syncthreads();
```
Example – shared variables

```c
float sum = 0.f;
if (radius < i && i < n - radius)
{
 // all accesses now go to shared memory
 // note change in indexing
 for(int j = 0; j < 2*radius; j++)
 sum += s_w[j]*s_x[threadIdx.x+j];
}
// always write back to global memory
// shared memory only live for the lifetime of a threadblock
y[i] = sum;
}
```
Example – shared variables

// optimized version of adjacent difference
__global__ void adj_diff(int *result, int *input)
{
    // shorthand for threadIdx.x
    int tx = threadIdx.x;
    // allocate a __shared__ array, one element per thread
    __shared__ int s_data[BLOCK_SIZE];
    // each thread reads one element to s_data
    unsigned int i = blockDim.x * blockIdx.x + tx;
    s_data[tx] = input[i];

    // avoid race condition: ensure all loads
    // complete before continuing
    __syncthreads();
    ...
}
Question:

```c
__global__ void race(void)
{
 __shared__ int my_shared_variable;
 my_shared_variable = threadIdx.x;

 // what is the value of
 // my_shared_variable?
}
```
Communication Through Memory

- This is a **race condition**
- The result is **undefined**
- The order in which threads access the variable is undefined without explicit coordination
- Use barriers (e.g., `__syncthreads`) or atomic operations (explained next time) to enforce **well-defined** semantics
Communication Through Memory

- Use `__syncthreads` to ensure data is ready for access

```c
__global__ void share_data(int *input)
{
 __shared__ int data[BLOCK_SIZE];
 data[threadIdx.x] = input[threadIdx.x];
 __syncthreads();
 // the state of the entire data array
 // is now well-defined for all threads
 // in this block
}
```
Advice

- Use barriers such as \texttt{syncthreads} to wait until \texttt{shared} data is ready
- Don’t synchronize or serialize unnecessarily
Generalize `adjacent_difference` example

AB = A * B
- Each element AB_{ij}
  - = \text{dot}(\text{row}(A, i), \text{col}(B, j))

Parallelization strategy
- Thread → AB_{ij}
- 2D kernel
__global__ void mat_mul(float *a, float *b, float *ab, int width)
{
    // calculate the row & col index of the element
    int row = blockIdx.y*blockDim.y + threadIdx.y;
    int col = blockIdx.x*blockDim.x + threadIdx.x;

    float result = 0;

    // do dot product between row of a and col of b
    for(int k = 0; k < width; ++k)
    {
        result += a[row*width+k] * b[k*width+col];
    }

    ab[row*width+col] = result;
}

How many loads per term of dot product?	$2 \ (a \ & \ b) = 8 \text{ Bytes}$
How many floating point operations? | $2 \ (\text{multiply & addition})$
Global memory access to flop ratio (GMAC) | $\frac{8 \text{ Bytes}}{2 \text{ ops}} = 4 \text{ B/op}$
What is the peak fp performance of GeForce GTX 260? | 805 GFLOPS
Lower bound on bandwidth required to reach peak fp performance | $\text{GMAC} \times \text{Peak FLOPS} = 4 \times 805 = 3.2 \text{ TB/s}$
What is the actual memory bandwidth of GeForce GTX 260? | 112 GB/s
Then what is an upper bound on performance of our implementation? | $\frac{\text{Actual BW}}{\text{GMAC}} = \frac{112}{4} = 28 \text{ GFLOPS}$
Idea: Use **shared** memory to reuse global data

- Each input element is read by **width** threads
- Load each element into **shared** memory and have several threads use the local version to reduce the memory bandwidth
Tiled Multiply

- Partition kernel loop into phases
- Load a tile of both matrices into \texttt{__shared__} each phase
- Each phase, each thread computes a partial result
__global__ void mat_mul(float *a, float *b,  
                        float *ab, int width)
{
    // shorthand
    int tx = threadIdx.x, ty = threadIdx.y;
    int bx = blockIdx.x,  by = blockIdx.y;

    // allocate tiles in __shared__ memory
    __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
    __shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

    // calculate the row & col index
    int row = by*blockDim.y + ty;
    int col = bx*blockDim.x + tx;

    float result = 0;
Better Implementation

// loop over the tiles of the input in phases
for(int p = 0; p < width/TILE_WIDTH; ++p)
{
    // collaboratively load tiles into __shared__
    s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
    s_b[ty][tx] = b[(m*TILE_WIDTH + ty)*width + col];
    __syncthreads();

    // dot product between row of s_a and col of s_b
    for(int k = 0; k < TILE_WIDTH; ++k)
        result += s_a[ty][k] * s_b[k][tx];
    __syncthreads();
}

ab[row*width+col] = result;
Use of Barriers in `mat_mul`

Two barriers per phase:

- `__syncthreads` after all data is loaded into `__shared__` memory
- `__syncthreads` after all data is read from `__shared__` memory

Note that second `__syncthreads` in phase $p$ guards the load in phase $p+1$

Use barriers to **guard** data

- Guard against using uninitialized data
- Guard against bashing live data
First Order Size Considerations

- Each **thread block** should have many threads
  - \( \text{TILE\_WIDTH} = 16 \rightarrow 16 \times 16 = 256 \) threads

- There should be many thread blocks
  - \( 1024 \times 1024 \) matrices \( \rightarrow 64 \times 64 = 4096 \) thread blocks
  - \( \text{TILE\_WIDTH} = 16 \rightarrow \) gives each SM 3 blocks, 768 threads
  - **Full occupancy**

- Each thread block performs \( 2 \times 256 = 512 \) 32b loads for \( 256 \times (2 \times 16) = 8,192 \) fp ops
  - Memory bandwidth no longer limiting factor
**Optimization Analysis**

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Original</th>
<th>Improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Loads</td>
<td>$2N^3$</td>
<td>$2N^2 \times (N/TILE_WIDTH)$</td>
</tr>
<tr>
<td>Throughput</td>
<td>10.7 GFLOPS</td>
<td>183.9 GFLOPS</td>
</tr>
<tr>
<td>SLOCs</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Relative Improvement</td>
<td>1x</td>
<td>17.2x</td>
</tr>
<tr>
<td>Improvement/SLOC</td>
<td>1x</td>
<td>7.8x</td>
</tr>
</tbody>
</table>

- Experiment performed on a GT200
- This optimization was clearly worth the effort
- Better performance still possible in theory
TILE_SIZE Effects

![Graph showing the effects of different tile sizes on GFLOPS](image)

- Untiled: Low GFLOPS
- 2x2: Very low GFLOPS
- 4x4: Low GFLOPS
- 8x8, 12x12, 14x14, 15x15: Moderate to high GFLOPS
- 16x16: High GFLOPS
Final Thoughts

- Effective use of CUDA memory hierarchy decreases bandwidth consumption to increase **throughput**
- Use `__shared__` memory to eliminate redundant loads from global memory
  - Use `__syncthreads` barriers to protect `__shared__` data
  - Use atomics if access patterns are sparse or unpredictable
- Optimization comes with a development cost
- Memory resources ultimately limit parallelism
- Tutorials
  - `thread_local_variables.cu`
  - `shared_variables.cu`
  - `matrix_multiplication.cu`
Questions?