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We use Brownian dynamics to investigate the effect of chain flexibility on the cross-
streamline migration of short polymers in a pressure-driven flow between two infinite
flat plates. A simulation method is described that models a polymer molecule at the
Kuhn step level as a chain of N freely jointed Brownian rods, and includes multibody
hydrodynamic interactions between the chain segments and the surrounding channel
walls. Our study confirms the existence of shear-induced migration away from the
solid boundaries toward the channel centreline as a result of wall hydrodynamic
interactions. At a fixed ratio H/Rg of the channel width to the bulk radius of gyra-
tion, and at a fixed value of the Weissenberg number Wi, simulations show that
migration is not significantly influenced by flexibility for chains of length N � 2. Much
weaker migration is observed however for fully rigid chains (N = 1), and a mechanism
is discussed to explain migration in that case.

1. Introduction
The recent advent of microfluidics as a tool for the miniaturization of chemical and

biological assays has spurred a renewed interest in the behaviour of macromolecules
and colloids in confinement. Interactions with boundaries and the short-scale
variations of fluid flows in such environments indeed result in unusual dynamics
(e.g. Jendrejack et al. 2003; Chen et al. 2005), many aspects of which remain poorly
understood. One phenomenon of interest, addressed in this paper, is the cross-
streamline migration of polymeric molecules in inhomogeneous flows, which has
implications for the effective rheology and transport of flowing polymer solutions.
Numerous studies have addressed this problem in the past (see the review by Agarwal,
Dutta & Mashelkar 1994), yet often disagree on issues as fundamental as the
direction of migration. A wide variety of physical mechanisms, such as wall exclusion,
configuration-dependent diffusivities or hydrodynamic interactions, may contribute
to the phenomenon, thereby making general predictions difficult to formulate.

The case of long-chain flexible polymers such as DNA molecules has received
much attention recently, both in experiments (Chen et al. 2005; Fang, Hu & Larson
2005) and computer simulations (Jendrejack et al. 2003, 2004; Chen et al. 2005; Usta,
Ladd & Butler 2005). The consensus from these studies is that flexible polymers in
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Figure 1. Problem geometry: we consider the pressure-driven flow of a dilute polymer solution
between two infinite flat plates. A polymer molecule is modelled as a chain of freely jointed
hydrodynamically interacting Brownian rods.

a pressure-driven channel flow migrate away from the walls toward the centreline,
leading to the formation of a depletion layer, whose characteristic thickness greatly
exceeds the radius of gyration of a single molecule. Graham and coworkers proposed
a theoretical model explaining the migration as a consequence of hydrodynamic
interactions between the walls and the entropic force dipole exerted by a stretched
polymer on the fluid, leading to a deterministic drift away from the walls (Jendrejack
et al. 2004; Ma & Graham 2005). As higher shear rates result in stronger molecular
stretching, the drift is expected to increase with flow strength, as is indeed observed
experimentally (Fang et al. 2005) and in numerical simulations (Jendrejack et al.
2004).

Experimental evidence of depletion layers in flowing solutions of rigid and semi-
flexible polymers has also been reported (Ausserré et al. 1991). Yet in these systems the
depletion layer thickness, which also increases with shear rate, typically remains of the
order of the radius of gyration of a molecule. Models for rigid polymers have focused
on steric exclusion with the walls (Ausserré et al. 1991; de Pablo, Öttinger & Rabin
1992; Schiek & Shaqfeh 1997). While neglecting wall hydrodynamic interactions, these
studies were reasonably successful at explaining experimental observations, including
the thickening of the depletion layer in strong flows, which may be a consequence
of more frequent collisions with the walls owing to an increased rate of molecular
tumbling.

The precise effects of wall hydrodynamic interactions and the applicability of the
entropic dipole model of Ma & Graham (2005) to the case of less flexible polymers
therefore deserve closer attention. In this paper we employ Brownian dynamics
simulations to address these issues. A Kuhn-step-level polymer model is described in
§ 2, allowing the simulation of a short chain of a few persistence lengths that includes
multibody hydrodynamic interactions between the chain segments and the channel
walls. Results are discussed in § 3, where we emphasize the effect of flexibility. A
summary and concluding remarks are given in § 4.

2. Model and numerical implementation
We consider the pressure-driven flow of a dilute polymer solution between two

infinite flat plates separated by a distance H (figure 1). A polymer molecule is model-
led as a chain composed of N freely jointed rigid rods (Kuhn steps) of length L

and aspect ratio A, as previously done by Nyland et al. (1996), Ådland & Mikkelsen
(2004), and most recently Butler & Shaqfeh (2005). The spatial configuration of a
given rod α is determined by the position xα of its centre of mass and by a unit
vector pα aligned with its major axis. The motion of each rod is described using
slender-body theory for Stokes flow, which relates the linear and angular velocities
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of the rod to the fluid velocity u(x) and to a line distribution f α of point force
singularities along the rod axis (Batchelor 1970):

ẋα + sα ṗα − u(xα + sα pα) = (I + pα pα) · f α(sα), (2.1)

where sα denotes a linear coordinate along the axis of the rod of interest, with origin
the centre of the rod. Equation (2.1), in which terms of order (log 2A)−1 have been
neglected, is an asymptotic approximation valid for high aspect ratios (A � 1). In the
present discussion lengths and times are made dimensionless using the characteristic
scales lc =L and tc = 4πµL3/kT log 2A, where µ and kT are the viscosity and thermal
energy of the solvent, respectively. The linear and angular velocities of the rod are
obtained by integration of equation (2.1):

ẋα =

∫ 1/2

−1/2

u(xα + sα pα) dsα + (I + pα pα) · Fα, (2.2)

ṗα = 12(I − pα pα) ·
∫ 1/2

−1/2

sαu(xα + sα pα) dsα + 12(I − pα pα) · F̃α, (2.3)

where Fα and F̃α denote the zeroth and first moments of the force distribution along
the rod axis, and are related to the total external force and torque on the rod.

Hydrodynamic interactions between rods and with the walls are captured through
the fluid velocity u in equations (2.1)–(2.3), which is the sum of the imposed pressure-
driven flow u∞ and the disturbance velocities induced by the other rods in the polymer
chain, and by the presence of the walls. For example, along rod α, u becomes

u(x) = u∞(x) +
1

2 log 2A

N∑
β=1

∫ 1/2

−1/2

GW (x; xβ + sβ pβ) · f β(sβ) dsβ, (2.4)

where GW (x; x0) denotes the Green’s function for Stokes flow in the geometry of
interest, from which the Oseen–Burgers tensor is subtracted when β = α. In this work
the exact Green’s function between two infinite flat plates (Liron & Mochon 1976)
was implemented in its regularized form as described by Staben, Zinchenko & Davis
(2003). In the case of a pressure-driven flow between two flat plates, the imposed fluid
velocity is

u∞(x) = Pe
z

L

(
1 − z

H

)
x̂, where Pe = γw tc. (2.5)

The Péclet number Pe, which measures the relative effects of the imposed flow and
of thermal diffusion on the dynamics of a chain segment, is defined as the product of
the wall shear rate γw = 6U0/H (where U0 is the cross-sectional average fluid velocity)
and the characteristic thermal time scale tc defined above.

Equations (2.1)–(2.4) constitute an integral system for the force distributions
along the chain segments. While this system can in principle be solved numerically
using quadrature, we describe a different approach allowing a more efficient, albeit
approximate, solution. Following Butler & Shaqfeh (2005), we expand the force
distribution in Legendre polynomials and only retain the first two terms:

f α(sα) ≈ Fα + 12sα[(I − pα pα) · F̃α + Sα pα]. (2.6)
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We have introduced the stresslet Sα on rod α, which is a scalar quantity arising from
the inability of the rod to stretch or compress along its major axis:

Sα = −1

2

∫ 1/2

−1/2

sα pα · u(xα + sα pα) dsα. (2.7)

The linearization (2.6) reduces the integral system for the force distributions to an
N × N linear system for the stresslets on the chain segments, which is easily inverted
by Gaussian elimination. Once the stresslets are known they can be substituted into
the linearized force distribution (2.6), which itself is used to obtain the disturbance
velocity (2.4). The rod motions are then inferred using equations (2.2)–(2.3). The
method thus described allows the calculation of the rod velocities in terms of the
imposed flow velocity and of the external force and torque on each rod, which can
be written symbolically as

Ṙ = Ṙ∞ + M(R) · F, (2.8)

where R denotes a generalized position vector containing the centre-of-mass positions
and orientations of all the rods, and F is a generalized force vector containing the
external force and first force moment on each rod. The tensor M is the grand mobility
operator, which accounts for hydrodynamic interactions between rods and with the
walls up to the stresslet term.

In this work the rods are subjected to constraint forces, excluded-volume forces,
and Brownian forces, all of which are discussed in detail by Butler & Shaqfeh (2005).
The constraint forces Fc are required to maintain the integrity of the chain, and
are calculated using the method of Lagrange multipliers to satisfy the constraint
that adjacent chain segments must remain linked. Excluded-volume interactions are
captured through strong and short-ranged repulsive forces Fe, which prevent overlap
between chain segments and with the channel walls. Finally the Brownian forces
Fb model collisions between the solvent molecules and the chain, and are stochastic
variables that must satisfy the fluctuation–dissipation theorem of statistical mechanics
(Doi & Edwards 1986):

〈Fb(t)〉 = 0, 〈Fb(t)Fb(t ′)〉 = 2δ(t − t ′)M−1, (2.9)

where 〈·〉 denotes the ensemble average, and δ(t) is the Dirac delta function. They are
calculated in a classic manner as

Fb =

√
2

�t
B · W, (2.10)

where �t is the time step, B satisfies B · BT = M−1 and is obtained by Cholesky
decomposition of the inverse of the grand mobility matrix, and W is a vector of length
6N containing random numbers from a Gaussian distribution with zero mean and
unit variance. Finally, the stochastic motion of the chain inside the gap is integrated
in time using Fixman’s midpoint algorithm (Fixman 1978), which is appropriate
for Brownian systems with configuration-dependent diffusivities (Grassia, Hinch &
Nitsche 1995).

3. Results and discussion
In the following discussion, flow strengths are expressed in terms of the Weissenberg

number Wi, or ratio of the longest bulk relaxation time λ of the chain to the
characteristic time scale of the flow (defined as the inverse of the wall shear rate):
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Figure 2. (a) Centre-of-mass concentration profile and (b) average normalized stretch in
the flow direction in a channel of width H = 8Rg at various flow strengths, for a molecule
composed of N = 6 segments of aspect ratio A = 10.

Wi = λ/γ −1
w . Equivalently, the Weissenberg number is given by the product of the

Péclet number and the dimensionless chain relaxation time. As we shall see, lengths
are also conveniently expressed in terms of the bulk radius of gyration Rg .

Typical concentration profiles across the gap are shown in figure 2(a) for a chain
composed of N = 6 segments and for various flow strengths in a channel of width
H = 8Rg . The profiles, which are qualitatively similar to those obtained previously by
other authors in the case of much longer chains (Jendrejack et al. 2003, 2004; Usta
et al. 2005), present several interesting features. A clear depletion layer is observed
in the vicinity of the walls. While this depletion layer exists even in the absence
of flow (Wi= 0), where its thickness is of the order of one radius of gyration, it is
shown to grow as Wi increases, resulting in fairly peaked distributions in strong flows.
The profiles for Wi> 0 also exhibit a slight depletion at the centreline, which is a
consequence of the gradient in the cross-streamline centre-of-mass diffusivity resulting
from the non-uniform stretching of the chain in the inhomogeneous shear. This non-
uniform stretching is illustrated in figure 2(b), showing the average molecular stretch
〈X〉 in the flow direction, normalized by the chain contour length NL. While the
stretch profile is uniform in the absence of flow, significant variations of 〈X〉 across
the gap are visible when flow is applied, with markedly stronger molecular stretch near
the walls than near the centreline owing to the variations in shear rate. Interestingly,
the dependence of 〈X〉 on the flow strength is rather weak when Wi > 0, a possible
consequence of hydrodynamic interaction with the walls as further discussed below.

To confirm the role of hydrodynamic interactions (HI) in the migration of the chains
toward the centreline, simulations were performed in which the interactions were com-
pletely turned off, corresponding to a freely draining chain with anisotropic drag. The
results are summarized in figure 3, showing concentration profiles and average stretch
profiles with and without HI. The figure also shows profiles with a different level of
modelling, in which the stresslet on each rod (equation (2.7)) was calculated based on
u∞ only: in that case each segment feels the disturbance velocity induced by the other
segments placed in the imposed field u∞ (including the associated wall disturbance),
but the multiple reflections between the segments are not included (two-body HI).
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Figure 3. Influence of hydrodynamic interactions on (a) the centre-of-mass concentration
profile and (b) the average normalized stretch for a molecule composed of N = 6 segments
of aspect ratio A = 10, in a channel of width H = 8Rg at Wi= 100. The different curves
show different levels of modelling: no hydrodynamic interactions, two-body hydrodynamic
interactions, and multibody hydrodynamic interactions at the stresslet level.

While the profiles corresponding to the two levels of modelling for HI cannot be distin-
guished, completely neglecting hydrodynamic interactions yields qualitatively different
results, with a very strong depletion at the channel centreline and no clear migration
away from the walls (other than that due to excluded volume): in that case the deple-
tion at the centreline is a consequence of the anisotropic drag on the chain segments,
which results in a gradient in cross-streamline diffusivity qualitatively similar to that
observed for a single Brownian rod (Nitsche & Hinch 1997; Schiek & Shaqfeh 1997).
This is in qualitative agreement with the previous observations of Jendrejack et al.
(2004) for bead–spring chains, and confirms the importance of wall hydrodynamic in-
teractions in the description of channel flows of flexible molecules. The effects of HI on
molecular stretch are also visible in figure 3(b), where it appears that hydrodynamic in-
teractions reduce the ability of the chain to stretch in the vicinity of the walls. Note that
this effect has also been observed in experiments (Fang et al. 2005), and may explain
the weak dependence of molecular stretch on flow strength observed in figure 2(b).

Figure 4 illustrates the influence of chain flexiblity (measured by the number of
Kuhn steps N) on the cross-streamline migration. In figure 4(a) the Péclet number Pe
and the ratio H/L of the channel width to the Kuhn step length are held constant:
in this situation longer chains migrate much more strongly away from the walls than
shorter ones, as exemplified by the very flat and very peaked profiles for N = 1 and
N = 10 respectively. In this sense chain flexibility appears to facilitate migration, a
consequence of the entropic force dipole exerted on the fluid (Ma & Graham 2005),
which is stronger in longer chains but non-existent in the limit of a fully rigid rod
(N = 1), where the only force dipole on the fluid is deterministic and due to the
stresslet induced by the imposed shear rate. Most interestingly, the concentration
profiles for the chain lengths N � 2 are observed to collapse onto a single curve
when the Weissenberg number Wi and the ratio H/Rg of the channel width to
the bulk radius of gyration are held constant, as shown in figure 4(b) for Wi = 50
and H = 8Rg . Note that a similar collapse is also observed at other values of the
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Figure 4. Concentration profiles for various chain lengths N when: (a) the Péclet number
Pe and ratio H/L of the channel width to the Kuhn step length are held constant (Pe= 100,
H/L = 8); (b) the Weissenberg number Wi and ratio H/Rg of the channel width to the bulk
radius of gyration are held constant (Wi= 50, H/Rg = 8).
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Figure 5. Depletion layer thickness θ (measured as the distance from the wall where the
concentration reaches its mean value) as a function of: (a) the flow strength (or Weissenberg
number Wi), and (b) the chain length N , for molecules composed of N segments of aspect
ratio A = 10 in a channel of width H = 8Rg .

Weissenberg number. This suggests in particular that Wi and H/Rg , rather than Pe
and H/L, are the appropriate dimensionless groups for quantifying the effects of
flow strength and channel width on the shear-induced migration. The fully rigid case
(N =1) differs qualitatively however, as shown in figure 4(b): it is characterized by
a much weaker migration (the mechanism for which is discussed below), and by a
fairly strong depletion at the centreline as a result of the gradient in centre-of-mass
diffusivity induced by the differential alignment of the rod across the channel width
(Nitsche & Hinch 1997; Schiek & Shaqfeh 1997).

Some of the observations mentioned above are summarized in figure 5, showing the
effects of flow strength and chain flexiblity on the thickness θ of the wall depletion
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layer, defined as the position away from the walls where the concentration profile
reaches its mean value. Figure 5(a) illustrates the thickening of the depletion layer
with flow strength: θ/Rg is observed to increase from a value of approximately 1.5 in
the absence of flow (Wi = 0) up to approximately 2.3 at Wi= 200 (for flexible chains
N � 2). Again when θ is scaled by Rg the dependence on chain length is negligible, as
the depletion layer thicknesses for N = 2, 6, and 8 collapse onto a single master curve.
The insensitivity of the depletion layer thickness to chain length is also illustrated in
figure 5(b), where it is observed that for a given flow strength θ/Rg does not depend
on N over the range N = 2 to 10. Figure 5(a) also confirms the significantly different
behaviour of fully rigid chains (N =1), for which depletions layers are much thinner
than for flexible chains; yet a thickening of θ/Rg with flow strength is also observed.

The case of a fully rigid polymer (N =1) was shown to differ qualitatively from
the flexible case and therefore deserves further attention. Unlike a flexible chain
which relaxes by entropic recoil, a rodlike polymer relaxes by randomization of its
orientation. The mechanism for shear-induced migration proposed by Jendrejack et al.
(2004) and Ma & Graham (2005) for flexible polymers, based on the entropic force
dipole exerted by a chain on the fluid as it tries to recoil while being stretched by flow,
therefore does not trivially carry over to rodlike polymers. Owing to its resistance to
stretching, a rigid rod in a non-uniform flow also exerts a force dipole on the fluid,
the magnitude of which is the stresslet S defined in equation (2.7). While S clearly
scales with flow strength, its sign and magnitude both depend on the orientation of
the rod relative to the imposed flow, which itself is determined by the balance between
fluid flow and thermal diffusion: its interaction with the nearby boundaries is unclear
a priori.

These considerations can be made more quantitative using similar arguments as in
Ma & Graham (2005). The force dipole D on a freely suspended rod with orientation
p in the pressure-driven flow equation (2.5) is given in dimensionless variables by

D = S
(

pp − I

3

)
≈ 1

24
pxpzγ (z)

(
pp − I

3

)
, (3.1)

where S is the stresslet on the rod, and γ (z) = ∂u∞/∂z = Pe(1 − 2z/H )/L is the local
shear rate. The rightmost expression in equation (3.1) is the leading-order term in an
expansion of equation (2.7). As shown by Smart & Leighton (1991), a force dipole D
in the vicinity of a no-slip wall is subject to a drift velocity as a result of hydrodynamic
interactions:

UD = − 3

8h2 log 2A

(
I +

1

2
nn

)
· D · n, (3.2)

where n is a unit vector normal to the plane of the wall and h is the distance from
the wall. Substituting (3.1) into (3.2), and superimposing the effects of both walls (an
approximation valid for large gaps H/L � 1), we find that the cross-streamline drift
velocity of the rigid rod is to leading order

UD
z = − γ (z)

128 log 2A
f (φ)

[
1

z2
− 1

(H − z)2

]
, (3.3)

where f (φ) is a function of the projected angle φ of the rod orientation
vector p onto the (x, z)-plane and measured with respect to the x-axis: f (φ) =
cosφ sinφ(3 sin2 φ − 1). Note that a more accurate albeit less intuitive expression for
UD

z accounting for multipole reflections between the rod and the two walls is easily
derived using the slender-body theory described in § 2.
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Figure 6. (a) Dependence f (φ) of the cross-streamline drift velocity UD
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angle φ of a rigid rod in the (x, z)-plane: f (φ) = cosφ sin φ(3 sin2 φ − 1). (b) Profile of the
mean cross-streamline drift velocity 〈UD

z 〉 for a rod of aspect ratio A = 10 in a channel of
width H = 8Rg , at various flow strengths, obtained from simulations.

Equation (3.3) shows that the rod can migrate either toward or away from the walls
depending on the sign of f (φ), which is plotted on figure 6(a). We see that both signs
are possible depending on the value of the projected angle. In a sufficiently strong
shear flow a rod will spend most of its time almost aligned in the flow direction
(φ � 0), leading to a migration away from the walls (f (φ) � 0 for 0 � φ � 35◦). Note
however that f (0) = 0, so that a very strong flow, while leading to large values of the
shear rate γ (z) in equation (3.3) for UD

z , will also result in a very strong alignment
of the rod for which 〈f (φ)〉 may be small: the overall effect on the migration is
therefore a subtle combination of the magnitude of the dipole induced on the rod
and the orientation of the rod with respect to the flow. The precise effect of flow
strength is illustrated in figure 6(b), showing the mean cross-streamline drift velocity
〈UD

z 〉 as a function of position and for various values of the Weissenberg number,
obtained using the full slender-body theory of § 2 and calculated numerically over the
course of the simulations. In particular, migration away from the walls is observed,
and the magnitude of the drift increases with flow strength. Figure 6(b) also shows
that the drift velocity is quite weak in the bulk of the channel, which may explain the
relatively weak migration observed in figure 4.

4. Concluding remarks
We have performed Brownian dynamics simulations of short-chain polymers in the

pressure-driven flow between two infinite flat plates, in which we modelled a polymer
molecule as a chain of freely jointed hydrodynamically interacting Brownian rods.
Our simulations showed that cross-streamline migration toward the channel centreline
occurs as a result of hydrodynamic interaction of the polymer with the wall. While
flexible chains of various lengths (2 � N � 10) all behave in a similar fashion for given
values of the Weissenberg number Wi and of H/Rg , the ratio of the channel width to
the bulk radius of gyration, fully rigid polymers (N = 1) are observed to undergo a
much weaker migration, the mechanism for which differs qualitatively and is based on
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a coupling between the stresslet induced by the flow on the rod, the orientation of the
rod as determined by the balance of flow and thermal fluctuations, and hydrodynamic
interactions with the walls.

The authors gratefully acknowledge funding from Canon (E.D.) and from a Gerald
J. Lieberman Graduate Fellowship (D.S.).
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