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a b s t r a c t

The adoption of multiple time step integrators can provide substantial computational sav-
ings for mechanical systems with multiple time scales. However, the scope of these savings
may be limited by the range of allowable time step choices. In this paper we analyze the
linear stability of the fully asynchronous methods termed AVI, for asynchronous variational
integrators. We perform a detailed analysis for the case of a one-dimensional particle mov-
ing under the action of a soft and a stiff quadratic potential, integrated with two time steps
in rational ratios. In this case, we provide sufficient conditions for the stability of the
method. These generalize to the fully asynchronous AVI case the results obtained for syn-
chronous multiple time stepping schemes, such as r-RESPA, which show resonances when
the larger time step is a multiple of the effective half-period of the stiff potential. Addition-
ally, we numerically investigate the appearance of instabilities. Based on the experimental
observations, we conjecture the existence of a dense set of unstable time steps when arbi-
trary rational ratios of time steps are considered. In this way, unstable schemes for arbi-
trarily small time steps can be obtained. However, the vast majority of these instabilities
are extremely weak and do not present an obstacle to the use of these integrators. We then
applied these results to analyze the stability of multiple time step integrators in the more
complex mechanical systems arising in molecular dynamics and solid dynamics. We
explained why strong resonances are ubiquitously found in the former, while rarely
encountered in the latter. Finally, in this paper we introduce a formulation of AVI that high-
lights the symplectic nature of the algorithm, complementing those introduced earlier by
other authors.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Symplectic integrators are usually adopted as the integrators of choice for molecular dynamics simulation of systems of
particles (bio-molecules, proteins, crystals. . .) and for some computational mechanics applications. One of the reasons be-
hind this choice is their excellent long-time energy conservation properties, which can be traced back to the existence of
a shadow Hamiltonian function almost exactly conserved by the numerical trajectory, see, e.g. [40,5].

A powerful and flexible approach for deriving symplectic integrators stems from a discrete version of Hamilton’s princi-
ple, which led to the development of variational integrators [46,30,33,27]. In this approach the starting point consists in con-
structing a suitable approximation to the action integral, termed the action sum. The algorithm then follows by requesting
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the discrete trajectory to be a stationary point of the action sum. Any variational integrator is symplectic, and conversely.
Additionally, variational integrators can be constructed to have other outstanding conservation properties by taking
advantage of a discrete version of Noether’s theorem [29,33,28], which guarantees that for each symmetry operation of
the discrete action there exists a corresponding conserved quantity, as in the continuous-time case. These and other features
of the theory of variational integrators have been thoroughly discussed in many earlier references (see previous references
and [49,32,48,36,27,33]); hence we shall skip further discussions herein.

Asynchronous variational integrators (AVI) are a class of variational integrators distinguished by the trait of enabling the
use of different time steps for different potential energy contributions to a mechanical system. Their formulation and use in
the context of finite-element (FE) discretizations in solids and some fluid mechanics simulations can be found in [26–28],
and they essentially amount to considering a possibly-different time step for each element in the mesh. These algorithms
share many features with other multiple time step methods in computational mechanics, commonly known as subcycling
or element-by-element methods [37,4,4,37,21,45,10,8,7,13,12].

In the context of molecular dynamics, r-RESPA [47,14] is perhaps the most widely known multiple time step method. It
has been long recognized that this method can display resonance instabilities, especially in the context of molecular dynam-
ics simulations [22,1,41,43,31,6]. These resonances severely limit the relative size of the time steps. Several approaches have
been proposed to reduce these instabilities. Schlick et al. [1,2,39] used Langevin dynamics along with extrapolative methods.
An appropriate choice of the friction coefficient in the Langevin equation stabilizes the trajectories even with very large time
steps. The isokinetic Nosé-Hoover chain RESPA proposed by Minary et al. [35] is another method that produces stable tra-
jectories for large time steps. Mollified versions of r-RESPA such as MOLLY were developed by Izaguirre et al. [23]. MOLLY
retains instabilities but they appear for larger values of the time steps (up to 50% greater). When the fast potentials are as-
sumed to be quadratic, an elegant procedure, called the two-force method [16,17], removes all resonances and captures the
correct coupling between slow and fast forces (see also [19]). However, the extension of this scheme to situations with more
than two time steps has not been reported so far.

Contrary to molecular dynamics, resonance instabilities have not hampered the use of multiple time step methods in
computational solid mechanics. Stability analyses for several subcycling methods have been performed [20,3,9,8,7]. In par-
ticular, many interesting aspects of the stability of some subcycling methods have been highlighted in [8,9]. Therein, it was
posited that the reason behind the successful performance of multiple time step methods in solid dynamics is that the set of
resonant time steps is very small. Consequently (within some reasonable stability considerations), it is unlikely in practice
that resonant time steps will be chosen. Even though the algorithms analyzed therein are not symplectic, and hence essen-
tially differ from AVI, we shall see that these same observations are valid for AVI.

The key distinctive feature of AVI over r-RESPA or many of the subcycling algorithms is that time steps in arbitrary ratios
can be considered. This extra degree of freedom becomes very useful in FE simulations, since time steps can be made to vary
smoothly throughout the mesh. In the molecular dynamics context, this freedom enables the adoption of more general
decompositions of the potential energy, each one with a characteristic time and length scale. In fact, as we shall discuss
in this document, AVI generalizes r-RESPA to arbitrary (instead of integer) time step ratios.

The complex stability considerations found in previous multiple time step methods with integer time step ratios is en-
riched when rational time step ratios are considered. The description of these novel features and their analysis are one of
the two main contributions of this document. The second key contribution is to utilize this analysis and some carefully
crafted numerical experiments to explain the dichotomy in the behavior of AVI between molecular and solid dynamics
simulations.

The key contributions of the paper are:

(i) A linear stability analysis of AVI when two time steps h1 and h2 are used to integrate a one-degree of freedom har-
monic oscillator whose potential energy has been split into a stiff and a soft part. We provide, in the form of Propo-
sition 1, a bound on the trace of the amplification matrix for integrators in which h2=h1 is a rational number. As a
corollary, a sufficient condition for the stability of the integrator follows. The resulting possible unstable time step
combinations generalize those obtained for r-RESPA in [1,39] for the same system.

(ii) A conjecture that the set of unstable time steps is dense and that arbitrary small unstable time steps exist. This con-
jecture is suggested by the theoretical analysis and numerical experiments. Systematic numerical tests in which all
unstable time steps were obtained along lines of the form h2 ¼ ðp=qÞh1 (p and q integers) strongly support this con-
jecture. Most of these resonances, however, are extremely weak and would require millions of time steps or more
to be observed, so they have no practical implications.

(iii) A numerical study of the location of the strongest instabilities as a function of h1 and h2, again for a harmonic oscil-
lator, which is similar to that presented in [11]. We propose a criterion to characterize the location of the strongest
resonances, and verify its validity by predicting the location of the most important resonances in the h1—h2 plane.

(iv) We demonstrate, through numerical examples and some analysis, that the weak long-range forces often present in
molecular dynamics are the key culprit for the stringent stability limitations of AVI. In the context of solid dynamics,
the local coupling between elements leads to a weak coupling between stiff and soft regions when these vary
smoothly in space. We show that as a consequence the set of time steps leading to unstable schemes is very small,
explaining why these resonance instabilities that are pervasive in molecular dynamics are only seldom observed in
FE simulations with AVI.
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Perhaps surprisingly, most of the features in the molecular dynamics and solid mechanics examples can be simply under-
stood with the analysis of the one-degree of freedom system. The integration of weak long-range forces with a large time
step near an integer multiple of the half-period of one of the natural modes in the system leads to a resonance instability.
This is manifested as an exponential growth of the amplitude of that mode. The width of the resonance for each mode, i.e. the
range of time steps for which a resonance is encountered, decreases with the stiffness of the long-range forces. Consequently,
the weaker the forces the more difficult it is to excite a resonant mode, and the slower the exponential growth is. In molec-
ular dynamics, the fact that long-range forces interact with every single degree of freedom in the molecule leads to wide
resonance intervals. Since in large molecular systems the set of natural frequencies is dense, it is almost certain that beyond
a certain threshold one of these frequencies will satisfy the resonance condition. The same limitation is found in most other
methods such as r-RESPA.

In contrast, in solid dynamics, soft elements integrated with large time steps also have the possibility of inducing a res-
onance in one or more of the high-frequency or stiff natural modes of the discrete structure. However, numerical examples
and analytical considerations show that the amplitude of the stiff modes decays exponentially fast in a soft region; this leads
to a very weak coupling between stiff and soft elements and to very narrow resonance intervals. These resonances are so
difficult to encounter even when an explicit effort to find them is made, that they effectively have no practical implications,
leading to a robust multiple time step integration algorithm. For the same reasons, it follows that it is safer to pick time steps
which vary smoothly in space, so that sudden transitions from stiff to soft materials do not induce resonant instabilities. This
is consistent with the findings in [9] for other multiple time step integrators in solid dynamics.

This paper is organized as follows: in Section 2 we present the derivation of AVI from a discrete version of Hamilton’s
principle, and comment about its implementation. Although the algorithm is essentially identical to that introduced in
[27], it is presented here in a framework better suited for molecular dynamics applications. The key difference is the defi-
nition of the positions for all the degrees of freedom at every potential update. This enables the construction of a single dis-
crete Lagrangian between any two consecutive potential updates, as opposed to the discrete Lagrangians per element that
naturally appear in the continuum mechanics setting of [27], but that do not have a natural analog in the ordinary differen-
tial equation case. By construction, it is then evident that AVI is symplectic. The AVI algorithm is presented in the non-stag-
gered form which is commonly found in molecular dynamics integrators.

In Section 3, the stability of r-RESPA discretizations for a harmonic oscillator is reviewed [1,39], since it is essential for the
subsequent analysis of the more complex AVI case in Section 4. Therein, the analysis proceeds by studying the stability
behavior of AVI in the case of a harmonic oscillator formed by two springs, in which one is very soft relative to the other.
The analysis reveals a sufficient condition for stability. We are not able to specify the behavior of the discretization when
these conditions are not satisfied, but numerical experiments show that instabilities are systematically encountered in at
least part of each connected time step interval in which these conditions are not met. A study of our conjecture that the
set of unstable time steps is dense follows. In particular, we provide specific examples of extremely small time steps which
lead to an exponential growth of the energy. The study of the location of the strongest resonances for the harmonic oscillator
is also presented here.

Section 5 contains the study of resonance instabilities for AVI in molecular dynamics and solid dynamics simulations.
Conclusions are provided in Section 6.

2. Variational derivation of AVI

To review the main ideas behind variational integrators we begin by recalling the simple case of the velocity Verlet (VV)
integrator and by showing its variational nature. This will simplify the later introduction of AVI. Consider a system of N par-
ticles with masses m ¼ ðm1; . . . ;mNÞ, and positions given by Cartesian coordinates x ¼ ðx1; . . . ; xNÞ with corresponding veloc-
ities v ¼ _x ¼ ðv1; . . . ; vNÞ; these particles interact according to a given potential function VðxÞ. Their trajectories xðtÞ are
governed by Newton’s equations of motion F ¼Ma where F ¼ �rVðxÞ, M is the diagonal matrix with the particle masses
along the diagonal, and a ¼ €x. For this system the VV integrator is given by:

vjþ1=2 ¼ vj þ h
2

M�1Fj; ð1aÞ

xjþ1 ¼ xj þ hvjþ1=2
; ð1bÞ

vjþ1 ¼ vjþ1=2 þ h
2

M�1Fjþ1; ð1cÞ

where h is the time step, tj ¼ jh, xj ¼ xðtjÞ, vj ¼ vðtjÞ, and Fj ¼ FðxjÞ, for any non-negative integer j. The VV integrator can also
be written in a time-staggered form:

xjþ1 ¼ xj þ hvjþ1=2
;

vjþ3=2 ¼ vjþ1=2 þ hM�1Fjþ1:

The VV integrator is commonly used in molecular dynamics because it is easy to implement, has a low computational cost,
and conserves energy remarkably well.
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We next review the variational derivation of the VV integrator, as shown for example in [24]. Following the usual con-
vention in Lagrangian mechanics, the position x and velocity v will be denoted by q and _q, respectively. The Lagrangian
for the system defined above is given by the difference between the kinetic and potential energies:

Lðq; _qÞ ¼
XN

a¼1

1
2

mak _qak2 � VðqÞ;

where ma is the mass of particle a and _qa is the velocity of particle a. The action of an arbitrary trajectory qðtÞ of the Lagrang-
ian system is defined as the time integral of LðqðtÞ; _qðtÞÞ in the interval of interest ½0; T�:

S½qð�Þ� ¼
Z T

0
LðqðtÞ; _qðtÞÞdt:

Hamilton’s variational principle states that the trajectory qðtÞ followed by the particles is a stationary point of the action
integral S among all smooth trajectories with the same initial and end points, qð0Þ and qðTÞ, respectively. The Euler–Lagrange
equations of this variational principle are precisely Newton’s equations of motion.

Variational integrators are constructed by mimicking this variational structure in the discrete case. The essential idea is to
approximate the action over a discrete trajectory and use a discrete variational principle to obtain the algorithm. More pre-
cisely, the time interval ½0; T� is partitioned into a sequence of times ftjg ¼ ft0 ¼ 0; . . . ; tM ¼ Tg with a time step h, and a dis-
crete trajectory on this partition is a sequence of positions fqjg ¼ fq0; . . . ; qMg. The approximation of the action, the action
sum, is constructed as

Sd½fqjg� ¼
XM�1

i¼0

Ldðqi; qiþ1Þ;

where Ldðq; ~qÞ is the discrete Lagrangian, which in the case of VV takes the form:

Ldðq; ~qÞ ¼ h
XN

a¼1

1
2

ma
~qa � qa

h

���� ����2

� VðqÞ þ Vð~qÞ
2

 !
: ð2Þ

The integrator follows by employing a discrete version of Hamilton’s principle: the discrete trajectory renders dSd ¼ 0 for any
variation dq satisfying dq0 ¼ 0 and dqM ¼ 0. The discrete Euler–Lagrange equations for this variational principle are

D1Ldðqj; qjþ1Þ þ D2Ldðqj�1; qjÞ ¼ 0 ð3Þ

for j ¼ 1; . . . ;M � 1, where DiLdð�; �Þ indicates the partial derivative of Ld with respect to its ith argument. This equation
implicitly defines a map ðqj�1; qjÞ7!ðqj; qjþ1Þ, which is the algorithm. The momenta fpjg are generally defined to be

pj ¼ D2Ldðqj�1; qjÞ ¼ �D1Ldðqj; qjþ1Þ; ð4Þ

where the second equality follows from the discrete Euler–Lagrange equations (3). For the discrete Lagrangian (2) and Eq.
(4), the momenta are given by

pj
a ¼ ma

qj
a � qj�1

a

h

 !
� h

2
oV
oqa
ðqj

aÞ ¼ ma
qjþ1

a � qj
a

h

 !
þ h

2
oV
oqa
ðqj

aÞ: ð5Þ

Eqs. (1a)–(1c) are recovered provided the velocities at half steps are defined as

_qjþ1=2 ¼ qjþ1 � qj

h
:

Eq. (4) implicitly defines a symplectic map ðqj; pjÞ7!ðqjþ1; pjþ1Þ, see e.g. [17], so that all variational integrators are symplectic.
In the case of VV, from Eq. (5) and given ðqj; pjÞ:

pj
a ¼ ma

qjþ1
a � qj

a

h

 !
þ h

2
oV
oqa
ðqj

aÞ ) qjþ1
a ¼ qj

a þ
h

ma
pj

a �
h
2

oV
oqa
ðqj

aÞ
� �

;

pjþ1
a ¼ ma

qjþ1
a � qj

a

h

 !
� h

2
oV
oqa
ðqjþ1

a Þ:

As a result, variational integrators conserve energy very well (no drift) over long-time scales [38,15]. This is a key property
for molecular dynamics and other problems.

We discuss next the derivation of AVI. The types of asynchronous discretizations discussed herein are applicable to sit-
uations in which the potential VðqÞ can be written as the sum of K potentials:

VðqÞ ¼
XK

k¼1

VkðqÞ:
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In the context of finite-element discretizations of continuum mechanics equations this decomposition is naturally accom-
plished on an element-by-element basis, while in the context of molecular dynamics for large proteins it is often achieved
by splitting the forces into strong, short-ranged ones and weak, long-ranged ones. In these situations it is possible to inte-
grate each one of the potentials Vk with a different time step, obtaining in this way a more efficient algorithm for a given
desired accuracy.

The idea is then to assign to each potential Vk a sequence of times f0 ¼ t0
k < � � � < tMk

k ¼ Tg. Additionally, we construct the
sequence of all times in the system fh0 < h1 < � � � < hMg by lumping together all potential times in a strictly increasing se-
quence; see the example in Fig. 1. As before, the position of the system at time hi is denoted by qi, and a discrete trajectory is
the sequence of positions fq0; . . . ; qMg. For each time hi we define the set KðiÞ as

KðiÞ ¼ fkj9j; tj
k ¼ hig:

For each k 2KðiÞ, we can define:

hiþ1=2
k ¼def tjþ1

k � tj
k and hi�1=2

k ¼def tj
k � tj�1

k ;

where tj
k ¼ hi.

The discrete Lagrangian for AVI is

Ldðq; ~q; iÞ ¼
XN

a¼1

1
2

maDh
~qa � qa

Dh

���� ����2

�
X

k2KðiÞ

hiþ1=2
k

2
VkðqÞ �

X
k2Kðiþ1Þ

hiþ1=2
k

2
Vkð~qÞ ð6Þ

with Dh ¼ hiþ1 � hi. The discrete action sum follows as

Sd ¼
XM�1

i¼0

Ldðqi; qiþ1; iÞ:

A graphical interpretation of this discrete Lagrangian is shown in Fig. 2.
One of the noteworthy features of this presentation, in contrast to that in [27], is that the discrete Lagrangian is not a

consistent approximation of the action during a time interval ðhi; hiþ1Þ, in the sense explained in [33]. Nonetheless, Sd is still
a consistent approximation of the action over the whole trajectory during the time interval ½0; T�. This is evident from rear-
ranging the terms in the sum, namely

Sd ¼
XN

a¼1

XM�1

i¼0

1
2

maðhiþ1 � hiÞ qiþ1
a � qi

a

hiþ1 � hi

���� ����2

�
XK

k¼1

XMk�1

j¼0

ðtjþ1
k � tj

kÞ
Vkðqk;jþ1Þ þ Vkðqk;jÞ

2
;

where qk;j is the position at time tj
k. The discrete Euler–Lagrange equations take the form:

ma _qiþ1=2
a �ma _qi�1=2

a ¼ �
X

k2KðiÞ

hi�1=2
k þ hiþ1=2

k

2
oVk

oqa
ðqiÞ; ð7Þ

where

_qiþ1=2
a ¼def qiþ1

a � qi
a

hiþ1 � hi
:

Eq. (4) defines the momenta fp0; . . . ; pMg, to wit

Fig. 1. Example of a time discretization for AVI. In this case a split into two potential energy functions is adopted. The times for potential V1 are
f0; t1

1; t
2
1; t

3
1; t

4
1g and those of potential V2 are f0; t1

2; t
2
2; t

3
2; t

4
2g. The resulting set of all time steps in the system is

fh0 ¼ t0
1 ¼ t0

2; h
1 ¼ t1

1; h
2 ¼ t1

2; h
3 ¼ t2

1 ¼ t2
2; h

4 ¼ t3
1; h

5 ¼ t3
2; h

6 ¼ t4
1 ¼ t4

2 ¼ Tg.
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pi
a ¼ ma _qi�1=2

a �
X

k2KðiÞ

hi�1=2
k

2
oVk

oqa
ðqiÞ ¼ ma _qiþ1=2

a þ
X

k2KðiÞ

hiþ1=2
k

2
oVk

oqa
ðqiÞ:

This derivation of AVI and the method itself differ slightly from those provided in [27,28]. The first difference with [27,28] is
the precise definition of the map ðqi; piÞ7!ðqiþ1; piþ1Þ, which was absent in the previous references. One key consequence is
that it makes the symplectic nature of the asynchronous discretization evident: due to the two-point discrete Lagrangian
in Eq. (6) and its associated definition of the momenta, the resulting map is symplectic. In contrast, in [27], it is shown that
AVI is a multi-symplectic algorithm, which is a natural concept in the context of continuum mechanics, but that lacks a clear
or traditional interpretation in the ordinary differential equations setting.

The second difference is the use of a trapezoidal rule to approximate the action integral within each elemental time step,
as opposed to the rectangle rule adopted in [27,28]. A consequence of this choice is the appearance of the average of two
consecutive time step sizes in the discrete Euler–Lagrange equations (7). This difference vanishes when the time step for
each potential is constant.

Finally, by reverting to the x and v notation adopted at the beginning of the section AVI reads

viþ1=2
a ¼ vi

a �
1

ma

X
k2KðiÞ

hiþ1=2
k

2
oVk

oxa
ðxiÞ; ð8aÞ

xiþ1 ¼ xi þ ðhiþ1 � hiÞviþ1=2; ð8bÞ

viþ1
a ¼ viþ1=2

a � 1
ma

X
k2Kðiþ1Þ

hi�1=2
k

2
oVk

oxa
ðxiþ1Þ; ð8cÞ

which reduces to VV when all time steps are identical.
It can also be verified that AVI is a generalization of the well-known r-RESPA [47]. To this end, it is enough to choose the

time steps for each potential such that hkþ1=hk ¼ rk is an integer, for all k P 1. In that case, Eqs. (8a)–(8c) can be implemented
as shown in Algorithm 2 in Appendix A. This algorithm is identical to r-RESPA.

2.1. Algorithm implementation

Since each of the potentials Vk has a different time step, a priority queue is used to determine the order in which the
potentials are evaluated. The elements of this priority queue have the form ðtj

k; kÞ, where tj
k is the next time at which poten-

tial Vk needs to be evaluated, with the elements sorted in ascending order with respect to tj
k. In case of equality of tj

k for dif-
ferent ks, the ordering does not matter. As a result the element at the top gives the time of the next potential evaluation and
the indices j and k corresponding to the time tj

k. The AVI routine in Algorithm 1 below is a possible implementation, best
tailored for problems with only a few different potentials with essentially all degrees of freedom as the arguments for each
one of them. This is a typical situation encountered in the simulation of macromolecules with molecular dynamics. In con-
trast, a version of the algorithm better suited for finite-element-like simulations has already been introduced in [27]. In this
latter case there are a large number of different potentials with only a few arguments each.

Algorithm 1. AVI algorithm

Input: h0; x0; v0; set of all potential times tfjgfkg
Output: ðhfig; xfig; vfigÞ, for all i
Initialization
i ¼ 0

Fig. 2. Graphical interpretation of the arguments of the discrete Lagrangian for AVI, Eq. (6), for a generic time interval ðhi; hiþ1Þ. The first term on the right-
hand side of Eq. (6) approximates the action stemming from the kinetic energy during ðhi; hiþ1Þ. In contrast, each one of the two remaining terms account for
one half of the contribution of potentials at time hi and hiþ1.
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v ¼ v0; x ¼ x0; hold ¼ h0

F1=2 ¼ F�1=2 ¼ 0
for all k do

Push ðt0
k ; kÞ into the priority queue Q

Mk ¼ size of array tfjgk

end for
Integrate the system over the time interval ½0; T�
while priority queue is not empty do

Pop the top element ðtj
k; kÞ from Q

hnew ¼ tj
k

if hnew > hold then
for all a do {Half-kick}

va ¼ va þ 1
2

F�1=2
a
ma

end for
xi ¼ x; vi ¼ v; hi ¼ hold

i ¼ iþ 1
for all a do {Half-kick}

va ¼ va þ 1
2

F1=2
a

ma

end for
x ¼ xþ ðhnew � holdÞv {Drift}
F1=2 ¼ F�1=2 ¼ 0

end if
hold ¼ hnew

if j > 0 then
F�1=2 ¼ F�1=2 � ðtj

k � tj�1
k ÞrVkðxÞ

end if
if j < Mk then

F1=2 ¼ F1=2 � ðtjþ1
k � tj

kÞrVkðxÞ
Push ðtjþ1

k ; kÞ into the priority queue Q
end if

end while
for all a do {Half-kick}

va ¼ va þ 1
2

F�1=2
a
ma

end for
xi ¼ x; vi ¼ v; hi ¼ hold

3. Stability of multi-step integrators

We begin by analyzing the stability of VV and r-RESPA. Similar analyses have been published elsewhere [39,1]. However,
since we will show that the results for AVI extend this analysis, we briefly recall the main results regarding VV and r-RESPA
(see e.g. [39,1] for a similar analysis).

Consider a system of n first-order ODEs:

_x ¼ Ax; xð0Þ ¼ x0:

Let Q be the propagation matrix representing the numerical integrator xjþ1 ¼ Qxj, where fx0; x1; . . . ; xMg is a time discretiza-
tion of xðtÞ. Then the integrator represented by Q is stable if and only if its eigenvalues kiðAÞ satisfy

jkij 6 1 ð9Þ

and are semi-simple1 when equal.
We should note that a linear stability analysis does not necessarily capture all possible instabilities. Non-linearities can

play an important role in rendering linearly stable schemes unstable, as shown in [42].
We now focus on the propagation matrix Q VV for a 1-D harmonic oscillator

€xþKx ¼ 0; xð0Þ ¼ x0; _xð0Þ ¼ v0;

integrated with VV. The matrix Q VV acts on phase-space variables x and _x. It is equal to:

1 An eigenvalue is semi-simple if the number of independent eigenvectors corresponding to that eigenvalue is equal to its algebraic multiplicity.
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Q VV ¼
1� h2

2 K h

�hK 1� h2

4 K
� �

1� h2

2 K

24 35:
It can be shown that the eigenvalues of Q VV satisfy the stability condition if and only if

h <
2ffiffiffiffi
K
p : ð10Þ

The range of stable time steps can also be found by looking at the shadow Hamiltonian for the numerical integrator. Obtained
from backward error analysis, the shadow Hamiltonian for a symplectic integrator is such that the trajectory it generates
matches exactly the numerical integrator at each time step. Shadow Hamiltonians are presented and discussed in greater
detail in [17,25,34,18]. Here the shadow Hamiltonian will be constructed for Q 2

VV instead of Q VV. The reason is that Q VV

may have negative eigenvalues in which case the shadow Hamiltonian is complex-valued. However, by considering Q 2
VV

the eigenvalues are always positive and the resulting shadow Hamiltonian is always real. The shadow Hamiltonian for
the integrator with propagator matrix Q 2

VV is

eHVVðq;pqÞ ¼

p2
q

2cþ 1
2 cKq2

� �
cos�1 1�h2

2 K
� 	
h
ffiffiffi
K
p if h < 2=

ffiffiffiffi
K
p

� 1
2 p2

q if h ¼ 2=
ffiffiffiffi
K
p

� p2
q

2cþ 1
2 cKq2

� �
cosh�1 h2

2 K�1
� 	

h
ffiffiffi
K
p if h > 2=

ffiffiffiffi
K
p

8>>>>><>>>>>:
;

where pq is the conjugate momentum of the spatial coordinate q and

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h

2

ffiffiffiffi
K
p� �2














vuut :

When h < 2=
ffiffiffiffi
K
p

the shadow Hamiltonian agrees with the result from [34]. Noticing that the level sets of eHVV are ellipses if
h < 2=

ffiffiffiffi
K
p

we conclude that VV is stable in this regime. However, if h ¼ 2=
ffiffiffiffi
K
p

the level sets of eHVV are now lines whereas for
h > 2=

ffiffiffiffi
K
p

the level sets are hyperbolas. In both cases these contours correspond to unstable trajectories. Therefore, VV is
unstable if h P 2=

ffiffiffiffi
K
p

.
To study the stability of multiple time step integrators, we start by examining the basic resonance mechanism for these

integrators. Consider a 1-D harmonic oscillator with the splitting K ¼ K1 þK2 where K1 P K2 > 0. Hereafter the spring with
spring constant K1 will be referred to as the stiff spring and K2 as the soft spring. We consider then the case in which the stiff
spring is integrated exactly. This results in a sinusoidal trajectory in time with constant energy as long as the soft spring is
not accounted for. The time-integration scheme for the soft spring modifies this trajectory by imparting an impulse (or
‘‘kick”) on the oscillator at time intervals of length h2, which makes the momentum instantaneously jump to a new value.
Between any two consecutive impulses, the trajectory is still sinusoidal in time with constant energy. If h2 happens to be
equal to an integer multiple of the half-period of the fast oscillator, then a resonance occurs, as clearly illustrated by the
phase diagram in Fig. 3. In this case the initial conditions are x ¼ 1 and _x ¼ 0. The soft spring impulse is then always applied
when x ¼ 1, _x 6 0 or x ¼ �1, _x P 0. In both cases, the sign of the force is such that it results in a net growth in speed, bringing
the oscillator to continue moving on a larger ellipse with increased energy. This leads to a resonant behavior. An analog
behavior will be observed for values of h2 that are close to but not exactly equal to half of the period of the stiff oscillator,
as we shall see next.

p
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Fig. 3. Phase plane diagram of harmonic oscillator hit with a velocity impulse every half-period. The initial conditions are x ¼ 1 and _x ¼ 0. Notice that in this
case the impulses result in a net energy growth, as evidenced by the radius of the circle representing the trajectory of the harmonic oscillator.
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With this resonance mechanism in mind we now proceed to examine the effect of integrating the stiff spring with a dis-
crete time step h1. Consider the case in which h2 ¼ ph1 where p is an integer. A single integration step of length h2 can be
decomposed as (see Eqs. (8)):

xjþ1

vjþ1

" #
¼ Vslow Q fastð ÞpVslow

xj

vj

" #
¼def Q r-RESPA

xj

vj

" #
;

where

Vslow ¼
1 0

� h2
2 K2 1

" #
and

Q fast ¼
1� h2

1
2 K1 h1

�h1K1 1� h2
1

4 K1

� �
1� h2

1
2 K1

24 35:
Since Q r-RESPA is the product of matrices each with determinant 1, its determinant is also 1. Therefore, when j TrðQ r-RESPAÞj < 2,
the two eigenvalues are distinct complex conjugates lying on the unit circle. Hence the integrator is stable.

When jTrðQ r-RESPAÞj ¼ 2, the two eigenvalues of Q r-RESPA are identical, and equal to 1 or �1. Since stability requires the
eigenvalue to be semi-simple in that case, it follows that the algorithm is stable if and only if Q r-RESPA ¼ �I, where I is the
identity matrix. This leads to h1 ¼ h2 ¼ 0. Hence, the case jTrðQ r-RESPAÞj ¼ 2 is always unstable.

Henceforth we shall assume that the stiff spring integrator is itself stable, i.e. that h2
1K1 < 4. The trace can then be ex-

pressed in terms of an invertible function h : ½0;2=
ffiffiffiffi
K
p

1� 7!½0;p�, hðh1Þ, such that:

cos h ¼ 1� h2
1

2
K1; sin h ¼ h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 1� h2

1

4
K1

 !vuut : ð11Þ

Denote:

G ¼
1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 1� h2

1
4 K1

� �r24 35; and RðhÞ ¼
cos h sin h

� sin h cos h

� �
:

Then it can be shown that Q fast ¼ GRðhÞG�1; and so

ðQ fastÞ
p ¼ GRðphÞG�1; ð12Þ

since RðhÞ is the rotation matrix. In this formulation an effective angular frequency can be defined as xeff ðh1Þ ¼ h=h1 so the
effective period is given by Teff ¼ 2p=xeff ¼ 2ph1=h. Using this alternative form for Q fast we find that

TrðQ r-RESPAÞ ¼ 2½cosðphÞ � a sinðphÞ� ð13Þ

where

a ¼ h2K2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 1� h2

1
4 K1

� �r : ð14Þ

The stability condition jTrðQ r-RESPAÞj < 2 can also be gleaned from constructing the shadow Hamiltonian. As noted before for
VV, to construct a real-valued shadow Hamiltonian we will consider the integrator with propagator matrix Q 2

r-RESPA. The sha-
dow Hamiltonian for this integrator is

eHr-RESPAðq;pqÞ ¼

p2
q

2cþ 1
2 cK1q2

� �
cos�1 1

2TrðQ r-RESPAÞð Þ
h2

ffiffiffiffiffi
K1

p if jTrðQ r-RESPAÞj < 2

sTr
sinðphÞ
2p sin h

h i
p2

q if jTrðQ r-RESPAÞj ¼ 2

sTr
p2

q

2c� 1
2 cK1q2

� �
cosh�1 1

2 TrðQ r-RESPAÞj jð Þ
h2

ffiffiffiffiffi
K1

p if jTrðQ r-RESPAÞj > 2

8>>>>><>>>>>:
;

where pq is the conjugate momentum of the spatial coordinate q and

sTr ¼ sgnðTrðQ r-RESPAÞÞ;

c ¼ 1
sinðphÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h1

2

ffiffiffiffiffiffi
K1

p� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
2

TrðQ r-RESPAÞ
� �2














vuut :
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Since the level sets of eHr-RESPA are ellipses when jTrðQ r-RESPAÞj < 2 we conclude that r-RESPA is stable in this regime. However,
if jTrðQ r-RESPAÞj ¼ 2 the level sets of eHr-RESPA are now lines whereas for jTrðQ r-RESPAÞj > 2 the level sets are hyperbolas. In both
cases these contours correspond to unstable trajectories. Therefore, r-RESPA is unstable if jTrðQ r-RESPAÞjP 2.

To determine what choice of time steps results in an unstable r-RESPA scheme, we start with the instability condition
jTrðQ r-RESPAÞjP 2. This condition is satisfied when

cos
2ph2

Teff
þ /

� �



 



P 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p ;

where

cosð/Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p ; sinð/Þ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p :

A few observations about these conditions are now appropriate. If h2 ¼ mTeff=2 for some integer m, the algorithm is unstable,
in agreement with the example discussed before. In fact, the instability appears for a range of values of h2 near mTeff=2. Nota-
bly, these values always lie on only one side of mT eff=2; they are always slightly smaller. Any value slightly larger than
mTeff=2 leads to stable schemes, albeit with energy oscillations of very large amplitude. Looking at Fig. 4a taking h2 to be
slightly smaller than Teff=2 gives an unstable scheme as shown by the diverging trajectory. On the other hand Fig. 4b shows
that taking h2 to be slightly larger than Teff=2 gives an ellipsoidal trajectory and hence the algorithm is stable. However, the
high degree of stretching in the ellipse means that the energy exhibits large oscillations as a function of time.

Using the analysis developed thus far, the width and amplitude of these resonances can be determined. When a� 1 and
h1

ffiffiffiffiffiffi
K1
p

� 1, the resonance width around h2 ¼ mTeff=2, or interval length of resonant time steps h2, is found to be propor-
tional to the ratio K2=K

3=2
1

l � Teff

p
a ¼ h2Teff

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 1� h2

1
4 K1

� �r K2 � mp K2

K3=2
1

; ð15Þ

where the first approximation uses tan�1ðxÞ � mpþ x for x small and the second assumes that for h1 small Teff � 2p=
ffiffiffiffiffiffi
K1
p

.
Therefore, the resonance width decreases as the stiffness K2 of the soft spring becomes softer relative to K1. One implication
of this is that resonances will persist even in the presence of a very soft spring but the probability of actually encountering
them is low.

The resonance amplitude can be calculated by determining the magnitude of the largest eigenvalue. From the trace and
determinant conditions the largest eigenvalue r1 satisfies

jr1j ¼
1
2
jTrðQ r-RESPAÞj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðQ r-RESPAÞ

2 � 4
q� �

:

The resonances occur for values of h2 near integer multiples of Teff=2

2ph2

Teff
¼ mp� b;
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Fig. 4. Phase plane diagrams for two choices of the time step h2 near Teff=2 with the trajectories sampled every h2 and denoted by the dots. The trajectory on
the left alternates between the second and fourth quadrants. The arrows point in the direction of increasing time. Here K1 ¼ 0:9, K2 ¼ 0:1, and
Teff=2 � 3:3115. Left: Taking the time step h2 to be slightly smaller than Teff=2 (h2 ¼ 3:30) the energy of the system grows unbounded as shown by the
trajectory diverging from the origin. Both branches of the trajectory are approaching the eigenvector of Q r-RESPA corresponding to the larger unstable
eigenvalue (solid line). Right: Taking the time step h2 to be slightly larger than Teff=2 (h2 ¼ 3:32) the resulting trajectory is a closed loop. As a result the
scheme is stable however the stretched ellipse implies that the energy exhibits large oscillations.
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where m is an integer and 0 < b < 2aþ Oða3Þ. Assuming once again that a is small and that h1

ffiffiffiffi
K
p

1 � 1, we obtain the fol-
lowing approximation for jr1j:

jr1j � 1þ ba� b2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

b4 � b2 þ �4
3

b3 þ 2b

� �
aþ b2a2

s
:

The maximum of jr1j is achieved near b ¼ a. With this, we get the following estimate for an upper bound on jr1j:

max
b
jr1j � 1þ aþ 1

2
a2 � 1þmp

2
K2

K1
; ð16Þ

where we have only accounted for the linear term in a for the last expression. The amplitude of the resonance also
decreases as the K2 spring becomes softer relative to K1. Note that the resonance amplitude is not maximum at
h2 ¼ mTeff=2, but near:

m
Teff

2
1� 1

2
K2

K1

� �
:

4. Stability of AVI

We now turn our attention to the stability of the AVI algorithm. For two time steps h1 and h2 a propagation matrix Q AVI

can only be defined if there exists a synchronization point for the time integration of the two springs. This is the case when
h2=h1 is a rational number p=q, where p and q are coprime integers. The two potentials then become synchronous at time
t ¼ qh2 ¼ ph1. We will next prove a sufficient condition for the stability of the AVI algorithm, and numerically investigate
the appearance of instabilities when the sufficient conditions are not satisfied.

Similarly to the study in Section 3, we need to calculate TrðQ AVIÞ. An exact equation for the trace can be found analytically
for certain p and q (using a symbolic manipulation package for example). However, an equation valid for all p and q is ob-
tained when a linearization in the variable K2 is performed:

TrðQ AVIÞ � 2½cosðphÞ � aq sinðphÞ�; ð17Þ

where

aq ¼
h2K2ðq� q2�1

q
h2

1
6 K1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1ð1� h2

1
4 K1Þ

q :

In fact, we provide an error bound for this approximation in the following proposition.

Proposition 1. Assume that the fast integrator is stable, namely, h2
1K1 < 4. If time steps h1 < h2 satisfy that h2=h1 ¼ p=q, for some

p and q coprime integers, then the following inequality holds:

TrðQ AVIÞ � 2½cosðphÞ � aq sinðphÞ�


 

 < ð2qa1Þ2 1þ 2a2

1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �q�2
2
; ð18Þ

where h ¼ h1xeff is defined in Eq. (11).

Before proving this result, let’s consider some of its implications. Notice first that the analysis in Section 3 (see Eqs. (13)
and (14)) corresponds to the case q ¼ 1. In that case, the trace is exactly linear in K2 and Eq. (17) is exact. Next, Eq. (18) pro-
vides a sufficient condition for stability, namely, the AVI algorithm is stable if

2j cosðphÞ � aq sinðphÞj þ ð2qa1Þ2 1þ 2a2
1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �q�2
2
< 2: ð19Þ

To better illustrate when instabilities may be found, we write

cosðphÞ � aq sinðphÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

q

q
cosðphþ /Þ

with

cos / ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

q

q
and sin / ¼ aq=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

q

q
; ð20Þ

from where it follows that

TrðQ AVIÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

q

q
cosðphþ /Þ;
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provided that the right-hand side in Eq. (18) is small enough. In these circumstances, a sufficient condition for the integrator
to be stable is for phþ / ¼ qh2weff þ / to be sufficiently away from mp. This is more precisely stated in the following
corollary:

Corollary 1. Assume that the fast integrator is stable, namely, h2
1K1 < 4. Then, for any e > 0 there exists g > 0 such that if

jphþ /�mpj > e for all m 2 Z and qh2K2=
ffiffiffiffiffiffi
K1
p

< g then

jTrðQ AVIÞj < 2

and the AVI integrator is stable.

Proof 1. Observe first that the condition jphþ /�mpj > e for all m 2 Z implies that j cosðphþ /Þj < j cosðeÞj. Next, since
h2

1K1 < 4, we have that a1;aq 2 R and that aq ¼ Oðqa1Þ. Finally, notice that if 0 < qh2K2=
ffiffiffiffiffiffi
K1
p

< g then

0 < qa1 <
g

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

1
4 K1

q < ĝ ð21Þ

and the right-hand side of Eq. (18) satisfies

ð2qa1Þ2 1þ 2a2
1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �q�2
2

< ð2ĝÞ2 sup
06a16ĝ

1þ 2a2
1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� � ĝ
2a1
�1

< ð2ĝÞ2 expðĝÞ: ð22Þ

It is then always possible to choose g > 0 such that

jTrðQ AVIÞj < 2j cosðeÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

q

q
þ ð2qa1Þ2 1þ 2a2

1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �q�2
2

< j2 cosðeÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

q

q
þ ð2ĝÞ2 expðĝÞ

< 2: �

This corollary generalizes the r-RESPA case (q ¼ 1) for qh2K2=
ffiffiffiffiffiffi
K1
p

� 1, since in this case / is also small and hence

the system is stable whenever ph1 ¼ qh2 is away from mTeff=2:

4.1. Proof of Proposition 1

We begin by constructing the propagation matrix Q AVI over the time interval t ¼ 0 to t ¼ qh2 ¼ ph1 as a composition of
multiple elementary matrices. A simple expression of the resulting matrix product is in most cases difficult to obtain, so the
key step in the proof is to perform a Taylor expansion for the trace of Q AVI in terms of K2, which leads to several simplifi-
cations. To this end,

TrðQ AVIÞðK2Þ ¼ TrðQ AVIÞð0Þ þK2
dTrðQ AVIÞ

dK2






K2¼0
þK2

2

2
d2TrðQ AVIÞ

dK2
2







K�2

:

This is exact for some 0 < K�2 < K2. We will show that:

TrðQ AVIÞð0Þ þK2
dTrðQ AVIÞ

dK2






K2¼0

¼ 2ðcosðphÞ � aq sinðphÞÞ; ð23Þ

K2
2

2
d2TrðQ AVIÞ

dK2
2







K�2














 < ð2qa1Þ2 1þ 2a2

1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �q�2
2

: ð24Þ

These two equations prove our result.
We begin by defining a few matrices which are the building blocks of AVI:

Vs ¼
1 0

� h2
2 K2 1

" #
; Vf ¼

1 0
� h1

2 K1 1

" #
; Ui ¼

1 i
q h1

0 1

" #
;

Q f ¼ Vf UqVf ¼
1� h2

1
2 K1 h1

�h1K1 1� h2
1

4 K1

� �
1� h2

1
2 K1

24 35;
Q sðmÞ ¼ Q�1

f ½Vf Uq�mVsVsUmVf �:
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Some of these definitions have been previously introduced. Matrices Vs and Vf correspond to kicks by the soft and the stiff
springs, respectively, while matrix Ui represents a drift for a time interval of length ih1=q. The matrix Q f is the propagation
matrix for a complete time step of the fast spring. Similarly, Q f Q sðmÞ represents a kick-and-drift step with the stiff spring,
followed by a kick by the soft spring, and a drift-and-kick step with the stiff spring. The drift time m=qh1 (Um) is required to
reach the time at which the soft spring kicks. After the soft kick, the system drifts for a time ð1�m=qÞh1 (Uq�m) to reach the
next time step for the stiff spring. The presence of Q�1

f in the definition of Q s was added for later convenience.

Let us introduce the sequence mi ¼ ip ðmod qÞ, and

ki ¼
ip
q


 �
� ði� 1Þp

q


 �
; 1 6 i 6 q;

where bxc stands for the largest integer smaller than x. The value of ki is the number of time steps the stiff spring needs to
perform between time steps i� 1 and i of the soft spring. Notice that this is exact because of the definition of Q s with the
factor Q�1

f . It then naturally follows that:

Xq

i¼1

ki ¼ p: ð25Þ

The propagation matrix Q AVI is then given by:

Q AVI ¼ VsðQ f Þ
kq Q sðmq�1ÞðQ f Þ

kq�1 � � �Q sðm1ÞðQ f Þ
k1 Vs:

This product leads to a complicated expression for arbitrary values of K2, but it leads to a surprisingly simple one in the
limit of very small K2. Since Q AVI is an infinitely smooth function of K2, we can apply Taylor’s theorem. The constant
term is

Q AVIjK2¼0 ¼ ðQ f Þ
p
:

The first derivative is equal to

oQ AVI

oK2






K2¼0

¼ oVs

oK2
ðQ fÞ

p þ ðQ f Þ
p oVs

oK2
þ
Xq�1

i¼1

ðQ f Þ
p�bipqc oQ sðmiÞ

oK2
ðQ f Þ

bipqc;

where the derivatives are evaluated at K2 ¼ 0. We can calculate the linear part of the trace:

TrðQ AVIÞ ¼ TrððQ f Þ
pÞ þK2Tr 2ðQ fÞ

p oVs

oK2
þ ðQ fÞ

p
Xq�1

i¼1

oQ sðmiÞ
oK2

 !





K2¼0

þ OðK2
2Þ

using the fact that TrðABÞ ¼ TrðBAÞ. Since mi is a permutation of 1; . . . ; q� 1, we also have:

TrðQ AVIÞ ¼ TrððQ f Þ
pÞ þK2Tr 2ðQ fÞ

p oVs

oK2
þ ðQ fÞ

p
Xq�1

i¼1

oQ sðiÞ
oK2

 !





K2¼0

þ OðK2
2Þ; ð26Þ

where i has been substituted instead of mi in Q s. The term oQ sðiÞ=oK2 at K2 ¼ 0 is a quadratic function of i which we write as

oQ sðiÞ
oK2






K2¼0

¼ A0 þ A1iþ A2i2
:

The coefficients can be obtained from the definition of Q sðiÞ:

A0 ¼ �h2
0 0
1 0

� �
; A1 ¼

h1h2

q
1 0

h1K1 �1

� �
; A2 ¼

h2
1h2

q2

� h1K1
2 1

� h2
1K2

1
4

h1K1
2

24 35:
The sum can therefore be computed analytically:

Xq�1

i¼1

oQ sðiÞ
oK2







K2¼0

¼ ðq� 1ÞA0 þ
ðq� 1Þq

2
A1 þ

ðq� 1Þqð2q� 1Þ
6

A2;

which, together with the value of ðQ fÞ
p in Eq. (12), enables the direct computation of the second term in Eq. (26):

K2Tr 2ðQ f Þ
p oVs

oK2
þ ðQ f Þ

p
Xq�1

i¼1

oQ sðiÞ
oK2

 !





K2¼0

¼ �
h2K2 q� q2�1

q

� �
h2

1
6 K1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1ð1� h2

1
4 K1

q
Þ

sinðphÞ: ð27Þ
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The first term in the same equation follows as

TrððQ fÞ
pÞ ¼ TrðGRðphÞG�1Þ ¼ TrðRðphÞÞ ¼ 2 cosðphÞ:

Together with Eqs. (27) and (26), this proves Eq. (23).
We now establish a bound on the second derivative of TrðQ AVIÞ. The first derivative at an arbitrary K2 is given

by:

oQ AVI

oK2
¼ oVs

oK2
ðQ f Þ

kq Q sðmq�1ÞðQ fÞ
kq�1 � � �Q sðm1ÞðQ f Þ

k1 Vs

þ VsðQ fÞ
kq Q sðmq�1ÞðQ f Þ

kq�1 � � �Q sðm1ÞðQ fÞ
k1

oVs

oK2

þ Vs

Xq�1

i¼1

ðQ f Þ
kq Q sðmq�1ÞðQ fÞ

kq�1 � � � oQ s

oK2
ðmiÞ � � �Q sðm1ÞðQ fÞ

k1

" #
Vs:

Using the facts that o2Vs=oK
2
2 ¼ 0 and o2Q sðmÞ=oK2

2 ¼ 0, we have

o2Q AVI

oK2
2

¼ 2
oVs

oK2
ðQ f Þ

kq Q sðmq�1ÞðQ f Þ
kq�1 � � �Q sðm1ÞðQ fÞ

k1
oVs

oK2

þ 2
oVs

oK2

Xq�1

i¼1

ðQ fÞ
kq Q sðmq�1ÞðQ f Þ

kq�1 � � � oQ s

oK2
ðmiÞ � � �Q sðm1ÞðQ f Þ

k1

" #
Vs

þ 2Vs

Xq�1

i¼1

ðQ fÞ
kq Q sðmq�1ÞðQ fÞ

kq�1 � � � oQ s

oK2
ðmiÞ � � �Q sðm1ÞðQ fÞ

k1

" #
oVs

oK2

þ 2Vs

Xq�1

i;j¼1
i<j

ðQ f Þ
kq Q sðmq�1ÞðQ fÞ

kq�1 � � � oQ s

oK2
ðmjÞ � � �

oQ s

oK2
ðmiÞ � � �Q sðm1ÞðQ f Þ

k1

2664
3775Vs: ð28Þ

In order to bound the second derivative, we need to recall some properties of matrix norms. Let Q be an n	 n matrix, n 2 N,
then

kQk2
E ¼ TrðQ TQ Þ kQk2

2 ¼ sup
~x 6¼~0

~xTQ TQ~x
~xT~x

and it holds that kQkE ¼ n1=2kQk2. Additionally, for any two n	 n matrices P and Q , it holds that

kPQk 6 kPkkQk

in any of the two norms. Finally, by Cauchy–Schwartz inequality we have

jTrðABÞj 6 kAkEkBkE 6 nkAk2kBk2: ð29Þ

We simplify the notations for clarity:

Q i ¼ G�1Q sðmiÞG;
Ri ¼ RðkihÞ;

which transforms Eq. (28) into

o2Q AVI

oK2
2

¼ 2
oVs

oK2
GRqQ q�1Rq�1 � � �Q 1R1G�1 oVs

oK2

þ 2
oVs

oK2
G
Xq�1

i¼1

Rkq Q q�1Rkq�1 � � �
oQ i

oK2
� � �Q 1Rk1

" #
G�1Vs

þ 2VsG
Xq�1

i¼1

Rkq Q q�1Rkq�1 � � �
oQ i

oK2
� � �Q 1Rk1

" #
G�1 oVs

oK2

þ 2VsG
Xq�1

i;j¼1
i<j

Rkq Q q�1Rkq�1
� � �

oQ j

oK2
� � � oQ i

oK2
� � �Q 1Rk1

2664
3775G�1Vs:
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We now simply denote k � k instead of k � k2. Noticing that kRik ¼ 1, we have that

1
4

Tr
o2Q AVI

oK2
2

 !










 6 G�1 oVs

oK2

oVs

oK2
G

���� ����kQ 1k � � � kQ q�1k

þ G�1Vs
oVs

oK2
G

���� ����þ G�1 oVs

oK2
VsG

���� ����� � Xq�1

i¼1

kQ 1k � � � kQ i�1k
oQ i

oK2

���� ����kQ iþ1k � � � kQ q�1k
" #

ð30Þ

þ kG�1VsVsGk
Xq�1

i;j¼1
i<j

kQ 1k � � � kQ i�1k
oQ i

oK2

���� ����kQ iþ1k � � �

2664 kQ j�1k
oQ j

oK2

���� ����kQ jþ1k � � � kQ q�1k
�
:

This equation is obtained by a simple application of Eq. (29). It can then be verified by direct calculation that

G�1 oVs

oK2

oVs

oK2
G

���� ���� ¼ 0; ð31Þ

G�1Vs
oVs

oK2
G

���� ���� ¼ G�1 oVs

oK2
VsG

���� ���� ¼ a1

K2
; ð32Þ

kG�1VsVsGk ¼ 1þ 2a2
1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �1
2

; ð33Þ

oQ i

oK2

���� ���� 6 2a1

K2
; ð34Þ

Q ik k 6 1þ 2a2
1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �1
2

: ð35Þ

The last two inequalities use the fact that

jq2 � iðq� iÞh2
1K1j < q2; for 0 < h2

1K1 < 4 and 1 6 i 6 q� 1:

Applying these results in Eq. (30), we get

K2
2

2
Tr

o2Q AVI

oK2
2

 !

















K�2

6 4qðq� 1Þa2
1 1þ 2a2

1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �q�2
2

< ð2qa1Þ2 1þ 2a2
1 þ 2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

q� �q�2
2

;

for any K�2 such that 0 6 K�2 6 K2, which proves Eq. (24). h

4.2. AVI and r-RESPA resonances

In the forthcoming sections we denote the effective half-period Teff ðh1Þ=2 by T1=2ðh1Þ. In Sections 4.2 and 4.3, all numerical
results were obtained using extended precision arithmetic (53 digits were typically used), and we will define a resonant
interval as an interval in the real line that contains all unstable time step values.

Given p and q, consider the problem of finding resonant points ðh1;h2Þ along the line h2 ¼ p
q h1. Our previous analysis pre-

dicts that the resonant points are approximately located at h2 ¼ m
q T1=2 for qh2K2=

ffiffiffiffiffiffi
K1
p

� 1. The behavior for larger values of
qh2K2=

ffiffiffiffiffiffi
K1
p

was investigated numerically and presented next.
A typical result is illustrated in Fig. 5, which shows the value of TrðQ AVIÞ as a function of h2. We note that: (a) its value

oscillates between �2 and 2 with a frequency close to ph=h2 � qweff and (b) an exhaustive examination of each local extre-
mum reveals that the value of the trace at each one of them is a resonant point. This leads to resonances located at approx-
imately h2 ¼ mT1=2ðh1Þ=q, as before. Other numerical tests consistently displayed the same behavior as well. However, the
presence of these two features in all examples does not follow from the result of Proposition 1. We conjecture that both char-
acteristics are generally true, as expressed in the following statement, which remains to be proved:

Let tp;qðh2Þ denote the value of TrðQ AVIÞ evaluated at ðh1;h2Þ ¼ ðqh2=p;h2Þ, for any p > q coprime integers. Then, there
exists a constant C independent of p and q such that for any h2 2 ð0;2p=ðq

ffiffiffiffiffiffi
K1
p

ÞÞ there exists an extremizer hr
2 of

tp;qðh2Þ that satisfies

h2 6 hr
2 < h2 þ

C
q
ffiffiffiffiffiffi
K1
p : ð36Þ

Additionally, all local extremizers are resonant points.
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Eq. (36) is motivated by the previous qualitative observation that the function tp;qðh2Þ oscillates as h2 changes with a fre-
quency close to qweff ðqh2=pÞ. It then easily follows that the corresponding approximate period is bounded as

2p
qweffðh1Þ

¼ 2p
h1

qhðh1Þ
6

2p
q
ffiffiffiffiffiffi
K1
p : ð37Þ

The last inequality follows after noticing that

hðh1ÞP
ffiffiffiffiffiffi
K1

p
h1; ð38Þ

for h1 2 ½0;p�. The restriction 0 < h2 < 2p=ðq
ffiffiffiffi
K
p

1Þ guarantees that only stable fast integrators are considered.
We explore next an important result that follow from assuming the previous conjecture to be true. This result states that

the set of resonant points is dense in the set H ¼ fðh1;h2Þ 2 ½0;2=
ffiffiffiffi
K
p

1� 	 R j h1 6 h2g. More precisely, this means that for any
point ðh1;h2Þ 2 H and e > 0, it is possible to find a resonant point ðhr

1;h
r
2Þ such that jh1 � hr

1j þ jh2 � hr
2j < e.

To prove this result, consider ðh1;h2Þ 2 H�and e > 0. Choose p and q such that ðh1; ph1=qÞ 2 H�,

p
q

h1 � h2





 



 < e
4

and
C

q
ffiffiffiffiffiffi
K1
p <

e
4
: ð39Þ

It is evident that such a pair ðp; qÞ exists, since p=q can be just adopted to be a rational approximation to h2=h1 with q large
enough so as to satisfy the second condition in Eq. (39). Based on the above conjecture, we have that there exists a resonant
point hr

2 such that

Fig. 5. Trace of Q AVI as a function of h2, when h2 ¼ ph1=q for given values of p and q. Two different examples are shown, which differ in the value of p, but
both adopt q ¼ 32, K1 ¼ p2, K2 ¼ p2=64. When the value of the trace is outside of the interval ð�2;2Þ, the integrator is unstable. Zooming in on the regions
where the trace is near 2 or -2 shows that, in each instance, there is an interval of instability. However, these instabilities are weak except when h2 is near a
multiple of T1=2: these are depicted with circles. The main difference between the two cases is that the top plot shows additional large resonances besides
the multiples of T1=2. These are depicted by a square and a diamond.
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hr
2 �

p
q

h1





 



 < C
q
ffiffiffiffiffiffi
K1
p <

e
4
: ð40Þ

Together, Eqs. (39) and (40) imply that jh2 � hr
2j < e=2. Since hr

1 ¼ hr
2q=p and q=p 6 1, we have from Eq. (40) that

jh1 � hr
1j < e=2, from where the result follows for any point in H�and hence in H.

We illustrate this result with an example next, in which we arbitrarily selected a set of time steps

ðh1;h2Þ ¼ ð0:0090579193; 0:12698681Þ

and find a pair of resonant time steps nearby. In this case, we chose p ¼ 85158 and q ¼ 6075 such that p=q � h2=h1. An unsta-
ble point over the line h2 ¼ ph1=q was found at

ðhr
1;h

r
2Þ � ð0:0090523798; 0:12690914Þ:

At this point we have

TrðQ AVIÞ � �2� 1:2350353	 10�16;

which is a very weak resonance. By choosing an even larger value for q, and hence p, we could have found an even closer
point.

A seemingly unusual consequence of the existence of a dense set of resonant points is that there are instabilities with
arbitrarily small time steps ðh1;h2Þ. As an example, we chose q = 10,000, p ¼ 1024qþ 1, K1 ¼ p2, K2 ¼ p2=64. The first res-
onant point along the line h2 ¼ ph1=q was found at

h1 � 9:6902126	 10�8; h2 � 9:9227787	 10�5:

At this resonant point, the trace is �2� 1:2873196	 10�32. The length of the instability interval is approximately 7	 10�21.
Both features are depicted in Fig. 6, which shows the value of the trace of Q AVI near its first minimizer. Notice that both h1

and h2 are much smaller than the upper bound for stability of the fast integrator, 2=p. In general, the larger the values of p
and q, the smaller the values of the first resonant set of time steps.

4.3. Unstable curves

We next discuss some additional aspects of the numerical experiments. As mentioned, resonances have been found at
each local extremum, located at approximately h2 ¼ mT1=2ðh1Þ=q. However, the vast majority of them are very weak. The
largest resonances are near points for which h2=T1=2 is an integer. These resonances are the same type of resonances found
in r-RESPA (see result in Section 3 for r-RESPA), and are indicated using a circle in Fig. 5.

In between the strong resonances near h2 ¼ iT1=2 and h2 ¼ ðiþ 1ÞT1=2 there are q� 1 weaker ones. We number the reso-
nances consecutively along the line h2 ¼ p

q h1 as h2 grows with an index m ¼ 1;2; . . .. With this convention, r-RESPA reso-
nances correspond to m ¼ 0 modðqÞ. The next largest resonances were observed to consistently correspond
approximately to m ¼ �p modðqÞ. More generally, let a, b�q=2c þ 1 6 a 6 bq=2c, be the unique integer such that m ¼ ap
modðqÞ (with p and q having the greatest common denominator equal to 1). The strength of the resonance and the width
of the associated resonant interval were consistently observed to decrease with jaj. In practice, this means that resonances
with low values of jaj, such as a ¼ 0, a ¼ 1 and a ¼ �1, are the ones which are most likely to be encountered, since the others
are very narrow. In Fig. 5a the square corresponds to a ¼ 1 and the diamond corresponds to a ¼ �1.

–6 –4 –2 0 2 4 6

x 10
–21

–1.5

–1

–0.5

0

0.5

1

1.5
x 10

–32

Fig. 6. Trace of Q AVI þ 2 as a function of h2 � h0
2, with h1 ¼ qh2=p and h0

2 � 9:9227787	 10�5 being the smallest unstable value. The rest of the parameters
for this calculation are: q ¼ 10;000, p ¼ 1024qþ 1, K1 ¼ p2, K2 ¼ p2=64. Negative values on the vertical axis correspond to unstable values of h2.
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These observations are illustrated in more detail in Figs. 7 and 8, which show the width of the resonant interval and the
amplitude for each resonance, respectively, as a function of the extremum index m. For this example we adopted q ¼ 1009
and p ¼ 2439. In general, the width of each resonance is highly correlated with the magnitude of the trace. The r-RESPA res-
onances are shown with circles, and are indeed the dominant ones. The resonances for a ¼ �3;�2;�1;1;2;3 are shown with
squares and are larger and wider. The remaining resonances are narrower and smaller (with a few exceptions). In this case all
extrema were found to be unstable as well, and indeed there are exactly 1008 resonances between the two r-RESPA peaks.
However, as emphasized by the number of decades spanned by the logarithmic vertical axis in Fig. 8, most resonances are
extremely weak. For most of them it would take millions of time steps or more to observe any visible drift in the energy.

The fact that only resonances with relatively low value of jaj are likely to be encountered is nicely displayed by the fol-
lowing numerical calculation. In this case, pairs of time steps are selected such that they are both integer multiples of a given
grid spacing h. For this study we adopted h ¼ 0:0005, K1 ¼ p2, K2 ¼ p2=25, h 6 h1 6 2=p, and h2 6 3:5. If the propagation
matrix Q AVI for a given pair of time steps ðh1;h2Þ has a spectral radius greater than 1, the pair is marked by a dark point
and the algorithm is unstable for that choice of time steps. Fig. 9 shows the resulting plot over the domain ½h;2=p� 	 ½h;3:5�.

Let us consider first the top plot in Fig. 9. The first noteworthy feature is that dark points do not appear everywhere, as
would be expected from the fact that resonant pairs form a dense set. Instead, some curves stand out in the midst of a non-
uniform cloud of dark points. This is only an artifact of choosing a finite step size, h ¼ 0:0005. Large resonant intervals are the
only ones likely to be visible on a plot with a finite resolution. As h goes to zero, the figure would be filled with more and
more dark dots and the lines would effectively ‘‘disappear”.

Approximate equations for these curves can be derived based on the previous empirical observations. Each of the thick
nearly ‘‘horizontal” lines in Fig. 9 correspond to a different integer value of h2=T1=2, the r-RESPA resonances. The remaining
curves are clearly narrower resonances, which we shall next see that correspond to low values of jaj.

Recall that a satisfies that m ¼ ap mod(q), from where it follows that m ¼ apþ bq for some integer b. Consequently, if
ph1 ¼ qh2, the resonance condition qh2 � mT1=2 is satisfied if and only if

b
h2
� 1

T1=2
� a

h1
: ð41Þ

For given values of a and b this is the equation of a curve in the ðh1;h2Þ-plane.
In Fig. 9 (bottom row), we plotted the curves with a ¼ 0 using thick solid lines (r-RESPA case), a ¼ 1 with dotted lines,

a ¼ 2 with the dashed lines, and a ¼ �1 with thin solid lines; b was varied to obtain several curves. The agreement with
the location of the resonant points found numerically (Fig. 9, top row) is excellent. This comparison highlights the impor-
tance of jaj in determining the width of the resonant interval. It would be interesting to obtain an analytical relation between
the two that extends the asymptotic results in Section 4.

5. Why are AVI resonances ubiquitous in molecular dynamics but not in solid dynamics simulations?

Resonances are strong and common in molecular dynamics but seldom appear in solid dynamics simulations. We now
use the insight gained in the last two sections with the stability analysis of the one-degree of freedom system to provide
an explanation of the startling differences encountered on the performance of AVI in molecular dynamics and solid dynamics

Fig. 7. Width of the resonant interval as a function of the resonance index for q ¼ 1009, p ¼ 2439, k1 ¼ p2 and k2 ¼ ðp=8Þ2. The vertical axis is in logarithmic
scale. Resonances of the r-RESPA type, in which h2 is a multiple of T1=2, are highlighted with circles. Resonances corresponding to m ¼ ap modðqÞ, with
a ¼ �3;�2;�1;1;2;3; are highlighted with squares. Extended precision arithmetic was adopted for this calculation to accurately compute the wide span of
decades in the vertical axis, including the width of resonances 1 and 2 on the left.
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Fig. 8. Amplitude of each resonance, illustrated as jTrðQ AVIÞj � 2 on the vertical axis, as a function of the resonance index for the case depicted in Fig. 7. The
vertical axis is in logarithmic scale. As in Fig. 7, resonances of the r-RESPA type are highlighted with circles, while those corresponding to m ¼ ap modðqÞ,
with a ¼ �3;�2;�1;1;2;3; are highlighted with squares.

Fig. 9. AVI stability plot. Top figure: each unstable pair ðh1; h2Þ is shown with a dot. Bottom figure: the theoretical prediction given by b=h2 ¼ 1=T1=2 � a=h1

for some pairs of a and b is shown (a ¼ 0;�1;1;2). The matching with the numerical results is excellent.
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simulations. To this end, we performed numerical studies on two simplified systems. The first one resembles a molecular
dynamics calculation; weak long-range forces are strongly coupled to local stiff springs. We analyzed the nature of the res-
onances by applying the results derived in the previous section. The second study considers the analog to a solid dynamics
calculation performed with a finite-element discretization, and consists of a mesh of springs with different stiffnesses. Indi-
vidual time steps for each spring are considered, with smaller time steps assigned to stiffer springs. We will see that in this
case resonances are present but they are weak and very narrow, in stark contrast with the first example. This explains in part
why such resonances are seldom seen in finite-element calculations.

5.1. Molecular dynamics analog

In molecular dynamics, particles are concurrently affected by potentials whose stiffnesses vary greatly. For example the
bond potential is very stiff while the electrostatic potential at large distances is very soft. To study the resonant behavior in
molecular dynamics we set up an analog using an infinite and periodic 2-D triangular harmonic lattice with a unit cell that
consists of an n	 n mesh of equal masses. To model the presence of short-range and long-range potentials, stiff springs are
used to connect each pair of neighboring masses and a weak gravitational potential connects each mass to its nearest and
second nearest neighbors; see Figs. 10a and b for the unit cell and a sketch of the interactions in the case n ¼ 4.

The infinite lattice is formed by locating an identical mass with mass m at every position of the form ðiL; jL
ffiffiffi
3
p

=2Þ with
respect to a pair of Cartesian coordinate axes, for any ði; jÞ 2 Z2, where L is the lattice parameter. The displacement of the
mass at ðiL; jL

ffiffiffi
3
p

=2Þ is denoted with ðuði;jÞ; vði;jÞÞ, where u and v are the Cartesian components of the displacement vector. Peri-
odic boundary conditions are imposed by restricting the set of possible displacements to those that are periodic with period
nL, i.e. uði;jÞ ¼ uðiþn;jþnÞ, for all ði; jÞ 2 Z2, and similarly for v.

Each mass is connected to its six neighboring masses with a spring. The potential energy for each one of these springs is

V sð‘Þ ¼
k
2
‘� Lð Þ2; ð42Þ

where ‘ is the deformed length of the spring. The harmonic lattice corresponds to replacing each one of these springs by its
quadratic approximation at ‘ ¼ L, the equilibrium length of the springs in the lattice in the absence of the gravitational po-
tential. If ðDu;DvÞ indicates the Cartesian components of the difference in displacements between the two ends of the spring,
the harmonic approximation to the potential is

Vh
s ðDu;DvÞ ¼ k

2
ðDu cos hþ Dv sin hÞ2; ð43Þ

where h is the angle the spring forms with the ð1;0Þ direction in the undeformed lattice (see Appendix B for details). This is
the potential used for each one of the springs in the numerical examples herein, for which we also adopted n ¼ 4, L ¼ 1,
m ¼ 1 and k ¼ 1.

In the absence of the non-linear gravitational potential, the harmonic lattice possesses a constant symmetric stiffness ma-
trix K independent of the displacements of the masses. It is then possible to find an orthonormal basis of eigenvectors for K,
the eigenmodes of the lattice. For the particular lattices considered here, there exist five groups of eigenmodes with natural
frequencies x ¼

ffiffiffi
6
p

,
ffiffiffi
5
p

,
ffiffiffi
3
p

,
ffiffiffi
2
p

, and 1.
Finally, the gravitational potential used to represent the long-range interactions of the masses is given by

VgðrÞ ¼ �
Gffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ �
p ;

where r is the distance between the two masses, G is the gravitational constant, and � is the softening term. To restrict VgðrÞ
such that the potential affects only the nearest and second nearest neighbors of each mass VgðrÞ is premultiplied by a switch-
ing function SðrÞ. Define the modified potential as

Fig. 10. Unit cell of a periodic harmonic lattice for the molecular dynamics analog. Each node in the graph represents a mass, and each edge an interaction
between the two nodes at its ends. Short-range interactions are depicted on the left, while long-range ones are indicated on the right.
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eV gðrÞ ¼
Sðr=rcÞVgðrÞ if r 6 rc

0 if r > rc

�
;

where

SðrÞ ¼ 1� 10r3 þ 15r4 � 6r5

and rc is the cutoff radius. The function SðrÞ is constructed such that eV gð0Þ ¼ Vgð0Þ and eV gðrÞ is a C2 smooth function. Nearest
neighbors in the lattice are separated by the lattice parameter L, while second nearest neighbors by

ffiffiffi
3
p

L, so by adoptingffiffiffi
3
p

L < rc 6 2L each mass in the periodic harmonic lattice is only affected by the long-range potential through interactions
with its nearest and second nearest neighbors. Fig. 11 compares these two versions of the gravitational potential. For our
simulations we adopted eV gðrÞ as the weak long-range potential and set G ¼ 0:01, � ¼ 1, and rc ¼ 1:85L.

In the absence of the gravitational potential, each one of the eigenmodes of the lattice is itself an independent harmonic
oscillator that does not interact with the remaining eigenmodes. The introduction of the long-range potential breaks this iso-
lation, and induces a weak interaction among all eigenmodes. This is sketched in Fig. 12.

The total energy of each mass in the lattice is defined as the sum of its kinetic energy plus its potential energy contribu-
tions. The latter is formed by adding up one-half of the potential energy of each harmonic spring and each gravitational inter-
action attached to the mass. The total energy in the unit cell of the lattice is obtained as the sum of the total energy of each
mass in the cell. For later use, it is also useful to specify a potential energy for each eigenmode in the unit cell, taken equal to
uT

xKux=2, where ux is the displacement along the eigenmode with frequency x.
For the numerical experiments we chose only two different time steps: a small time step h1 for the springs, the stiff

potentials; and a larger one h2 for the gravitational potential, which is soft. In fact we chose h1 ¼ 0:001 so that the integration
of each one of the eigenmodes of the harmonic lattice is nearly exact, because h1x� 1 for any of the frequencies listed ear-
lier. Since the gravitational potential is weak, its effect over each one of the eigenmodes is similar to that of the soft potential
in the analysis in Sections 3 and 4, and hence we expect that if h2 is close to an integer multiple of the half-period of any of
the eigenmodes, a numerical resonance should be observed.

To search for resonances the time step h2 for the gravitational potential was varied from 1 to 4 in increments of 0.005.
Each integration was carried out until a maximum time of 500 was reached. At the end of each simulation the total energy
of the unit cell lattice was recorded. The energy growth was computed as the difference between the total energy at the
beginning and at the end of the simulation. These results are shown in Fig. 13, which also shows with solid dots the values
of h2 that correspond to integer multiples of the half-period for each one of the five different values of x in the simulation.
The close location of the spikes in the figure to the solid dots evidences that the expected numerical resonances are in fact
occurring, triggered by the interaction of the gravitational potential with each one of the eigenmodes.

To further examine this resonant behavior, we chose the time step h2 to be close to the half-period of the x ¼
ffiffiffi
6
p

and
x ¼

ffiffiffi
5
p

eigenmodes. Their half-periods are T1=2 ¼ p=
ffiffiffi
6
p
� 1:283 and T1=2 ¼ p=

ffiffiffi
5
p
� 1:405, respectively. The total potential

energy of the x ¼
ffiffiffi
6
p

eigenmodes for h2 ¼ 1:285 and the x ¼
ffiffiffi
5
p

eigenmodes for h2 ¼ 1:41 are shown in Figs. 14 and 15,
along with the energy of the other eigenmodes. In both cases we observe an exponential-in-time growth of the total energy
of the resonant eigenmodes, with a nearly unaffected evolution for the remaining ones. Only very late in the simulation does
Fig. 15b display the beginning of an exponential-in-time growth of the energy of one of the remaining eigenmodes, as a re-
sult of the weak coupling between them and the already large amplitude of the x ¼

ffiffiffi
5
p

eigenmodes.
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Fig. 11. Comparison of the two versions of the gravitational potential. The dotted line represents the gravitational potential VgðrÞ ¼ �G=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �
p

with G ¼ 1
and � ¼ 1. The solid line is the modified potential ~VgðrÞ which equals �Sðr=rcÞG=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �
p

for 0 6 r 6 rc (where SðrÞ ¼ 1� 10r3 þ 15r4 � 6r5) and zero for
r > rc. Here rc is taken to be 1.85.
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For a molecular dynamics simulation with a large number of atoms, integer multiples of the half-periods of the eigen-
modes (also called the normal modes) are essentially closely packed over the real line. Therefore, in practice, it is virtually
impossible to choose a value for h2 that does not resonate with at least one of the eigenmodes, as illustrated with this exam-
ple. Remarkably, the results on the very simple one-degree of freedom system in Sections 3 and 4 provide a clear explanation
of the behavior observed in this example, and can be extrapolated to infer some aspects of the behavior for more complex
systems. Fundamentally, what makes it possible is precisely the apparent lack of interaction among different modes of the
lattice at the early stages of the resonant behavior.

5.2. Solid dynamics analog

The second set of studies focus on a finite-element-like simulation, such as those used in solid mechanics for linear elastic
problems. These cases usually lack a long-range force and are characterized by the existence of a range of element stiffness
values, arising from the presence of different material properties and element sizes. Moreover, in many situations element
stiffness values vary smoothly throughout the domain.

The potential energy for an elastic solid can be written as a sum of elemental contributions. An AVI discretization then
naturally follows by assigning a possibly-different time step to each one of the elements (see [27]). The time step of each
element is inversely proportional to its element stiffness value, and hence softer elements are allocated larger time steps.

If adaptive mesh refinement strategies are adopted, then the range of elemental stiffness values could possibly be very
wide. In fact, some elements in the mesh are often integrated with time steps that are near an integer multiple of the
half-period of a resonant mode of the structure. Why is then that the expected resonances are generally not encountered

2 modes
ω=0

Soft Springs
Long Range

Eigenmode
6 modes

ω=1

3 modes
ω=√212 modes

ω=√3

6 modes
ω=√5

3 modes
ω=√6

Fig. 12. Schematic interpretation of the lattice with a weak gravitational potential. In the absence of the gravitational potential each eigenmode in the
lattice is an independent harmonic oscillator, depicted here as each one of the six wiggly springs. The gravitational potential breaks this isolation by
connecting together the masses of each one of the eigenmodes via weak springs, depicted here with straight segments.

Fig. 13. Energy growth of the unit cell of the lattice due to numerical instabilities, as a function of the time step h2 used to integrate the long-range
gravitational potential. The energy growth at each time step value was computed as the difference between the energy at the beginning and at the end of
each simulation. The solid dots represent the expected resonant time steps according to Section 3.
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in practice, as evidenced in the simulations in [26–28]? The answer is that the resonances are still present, as the foregoing
analysis demonstrates. However, their amplitude and width are so small that they are hardly noticed in practice. The key
difference with the molecular dynamics case in Section 5.1 lies in the absence of the long-range force. We shall illustrate
these ideas with an example next.

We consider herein the same harmonic lattice adopted for the example in Section 5.1, in this case with no long-range
gravitational potential and with a larger unit cell. The potential energy for each one of the springs connecting two neighbor-
ing masses is again determined by the harmonic approximation in Eq. (43), and displacements are restricted to be periodic,
as specified earlier. When all springs are identical, the stiffness matrix of this lattice is identical to that obtained by identi-
fying each triangle in the lattice as a piecewise linear finite-element made of an isotropic linear elastic material with Lame
constants k ¼ l ¼

ffiffiffi
3
p

k=4.
To represent the spatially varying stiffness values, we consider two different configurations of the springs: (1) only one

spring in the unit cell is soft, while all the remaining ones are stiff (see Fig. 16a); and (2) a core of several soft springs, while
the rest of the springs in the unit cell are stiff, as shown in Fig. 16b. In both instances, however, all springs but one are inte-
grated with a small time step h1, while one of the soft springs, the same in both cases, is integrated with a longer time step h2

(see Fig. 16). For both types of lattices, the relevant eigenmodes to study the resonant behavior are those of the unit cell
without the only soft spring integrated with a longer time step. We shall henceforth refer to these as the eigenmodes.

For all the forthcoming numerical examples we have adopted the values of n ¼ 7, L ¼ 1 and k ¼ 1 for the stiff springs and
k ¼ 0:33 for the soft ones. We have purposely decided to avoid making the latter much smaller than the former, so as to high-
light other types of phenomena that may also occur, as we shall next see. As in Section 5.1, we set h1 ¼ 0:001 so that it is
much smaller than the period of any natural frequency in the lattice. The time step h2 was varied from 1.3 to 1.6 in incre-
ments of 0.005. The total energy of the system was recorded at the end of a simulation with a total simulation time equal to
500.

Fig. 14. Evolution of the potential energy for each group of eigenmodes for h2 ¼ 1:285, the time step of the weak long-range gravitational potential. It is
seen that the eigenmodes whose half-period is p=

ffiffiffi
6
p
� 1:283 are resonant with the long-range interaction, as expected from Section 3.

Fig. 15. Evolution of the potential energy for each group of eigenmodes for h2 ¼ 1:41, the time step of the weak long-range gravitational potential. It is seen
that the eigenmodes whose half-period is p=

ffiffiffi
5
p
� 1:405 are resonant with the long-range interaction, as expected from Section 3. Only by the end of the

simulation does another group of eigenmodes display exponential-in-time growth of the potential energy, as a result of the weak coupling with the by-
then-large amplitude oscillations of eigenmodes corresponding to x ¼

ffiffiffi
5
p

through the long-range potential.
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Fig. 17 shows the total value of the energy at the end of each simulation as a function of h2 for the first case, i.e. when only
one soft spring is considered. The dots on the horizontal axis represent the half-period of the eigenmodes that fall within this
time step range and are coupled to the soft spring (only three eigenmodes). As before, when the time step h2 is near the half-
period of one of the eigenmodes, resonant behavior was observed. However, in this case the resonance plot is not as simple
as that in Section 5.1. In addition to the resonance instabilities that correspond to each one of the natural frequencies of the
system, we observe a number of other peaks between the dots on the horizontal axis. This more complex profile results from
a coupling between modes whose frequencies are close to one another given that the stiffness of the soft springs, 0.33, is not
much smaller than that of the stiff ones, 1. These instabilities can be understood by analyzing a system of two harmonic
oscillators joined by a third spring, in which the former are integrated with a smaller time step than the latter. We shall
not expand on this observation, but just note that other types of resonances can be observed in addition to those arising from
the excitation of a single eigenmode.

We now turn to the case where we have a core of soft springs, but in which only one of them is integrated with a long
time step h2. The total energy at the end of the simulation as a function of h2 is shown in Fig. 18. The marks on the horizontal
axis indicate the half-periods of those eigenmodes that fall within this time step range and have some non-negligible cou-
pling with the soft spring integrated with a long time step. We observe that only the energy peak located near h2 ¼ 1:56
corresponds to one of the natural frequencies of the lattice (dot), with the other five peaks resulting from coupling between
two or three eigenmodes. The marks at the energy peaks identify which modes are involved in the coupling that produces
the observed instability. The eigenmode with half-period near 1.56 is involved in all five coupling events. For example the
peak located at 1.45 is the product of coupling between the eigenmode with a half-period near 1.35 (triangle) and the eigen-
mode with a half-period near 1.56 (dot). In addition notice that the vertical energy scale is much shorter than that in Fig. 17.
Resonances are still present, but they have been severely tamed and are much narrower than those in Fig. 17 when the soft
core was absent.

To explain this result, it is convenient to take a look at the stiffness matrix of the entire lattice K. We can decompose K as
K ¼ K1 þ K2 where K2 contains the one soft spring being integrated with the long time step and K1 contains all of the other
springs (containing in fact both stiff and soft springs). The equation of motion is given by

Fig. 16. Solid mechanics analogs using harmonic lattices. The soft spring integrated with a large time step h2 is drawn with a dotted line. In the case
depicted on the right the rest of the soft springs, which are integrated with a small time step h1, are drawn with a dashed line. Stiff springs are drawn with a
solid line.

Fig. 17. Total energy of the harmonic lattice as a function of the time step adopted for the integration of the single soft spring in the lattice. The dots on the
horizontal axis indicate integer multiples of half-periods of the eigenmodes in this time interval. Only those eigenmodes that are coupled to the soft spring
are shown. Two types of resonances are observed, those that excite eigenmodes with the same natural frequency, recognized by the dots within them, and
those that excite combinations of eigenmodes, as detailed in the text.
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€xþ ðK1 þ K2Þx ¼ 0:

Now we can perform an eigenvector transformation for K1 which gives

€yþ ðKþ VTK2VÞy ¼ 0;

where K1 ¼ VKVT and y ¼ VTx. This equation shows that, similar to the molecular dynamics case, there is a coupling between
the soft spring with a long time step and the stiff modes. However, this coupling is given by matrix VTK2V. Because of the
presence of the soft core, the entries in VTK2V corresponding to stiff modes are very small, since as we shall see, stiff eigen-
modes decay rapidly once they enter the region with soft springs. It then follows that the very small coupling terms in VTK2V
for the stiff modes effectively makes the soft spring integrated with time step h2 even softer. As can be seen from Eqs. (15)
and (16), the resulting resonances are still present, but they will be narrow and weak. Therefore, resonances are seldom ob-
served in these types of simulations.

We showcase next the exponential decay of the high-frequency eigenvectors in the soft region through a one-dimensional
example. Consider a system of 20 springs made of 10 springs with stiffness k1 ¼ 8 attached to 10 other springs with stiffness
k2 ¼ 1, and identical masses between any two consecutive springs. The eigenvectors must satisfy the following equations:

kði�1Þðxi � xi�1Þ � kðiÞðxiþ1 � xiÞ ¼ kxi; i ¼ 2; . . . ;20;

where xi indicates the position of mass i and kðiÞ is the stiffness of spring i which connects masses i and iþ 1. A high-fre-
quency eigenvector has k
 k2. To estimate its decay in the region with soft springs, we assume that jxiþ1j � jxij for
i P 12. Then in this region

xi �
k2

2k2 � k
xi�1:

This corresponds to a geometric decay with rate � �k2=k. Fig. 19 plots the first three stiffest eigenvectors. The circles corre-
spond to the predicted geometric decay. We see that the prediction is quite accurate.

Fig. 18. Total energy of the harmonic lattice with a core of soft springs, in which only one of these springs is integrated with a longer time step. This time
step is indicated on the horizontal axis. The marks on the horizontal axis indicate the half-periods of the eigenmodes that have a non-negligible coupling
with the spring with the long-time step. Observe that only the energy peak denoted by the dot occurs at one of the natural frequencies of the lattice. The
other peaks result from a coupling between modes with the same mark and the mode marked by a dot. For example the energy peak at 1.45 is due to a
coupling between the mode with half-period 1.35 (triangle) and the mode with half-period 1.56 (dot). Notice that, in comparison with Fig. 17, the vertical
axis has a drastically shorter energy scale, reflecting the fact that resonances in this case are much weaker and narrower than when only one soft spring is
present in the entire lattice.

Fig. 19. Exponential decay of eigenvectors over core of soft springs. The circles are the analytical approximation of the decay. The agreement between the
two is rather good.
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This example demonstrates that stiff eigenvectors decay exponentially fast when they enter a soft region. A similar phe-
nomenon should be valid in two-dimensional and three-dimensional meshes as well. In a mechanical problem then, soft re-
gions of the mesh are only ‘‘locally” coupled to stiff ones. A soft element can still induce resonances in nearby stiff regions,
but the strength of their coupling is exponentially small with the distance between them.

6. Summary

We studied the stability of AVI integrators and showed that results derived for the synchronous r-RESPA family of inte-
grators can be generalized to asynchronous integrators such as AVI. We provided sufficient conditions for stability. We pos-
tulated that for a system of two 1-D springs with different stiffnesses an instability is observed when the synchronization
time ph1 ¼ qh2 is near a multiple of the half-period of the stiff potential. We motivated a conjecture that implies that the
set of resonant time steps is dense, which was verified using systematic numerical tests. It also follows from the conjecture
that arbitrarily small unstable time steps exist and, indeed, very small unstable time steps were found numerically. Most of
these resonances were found to be very weak, and of little importance in practice. We characterized the strongest resonances
through a family of curves parametrized by two integers, which reproduced the numerical results very well.

In addition, we examined the resonance behavior of AVI in molecular dynamics and solid mechanics. The main result is
that resonances are easily observed in molecular dynamics due to the strong coupling between stiff modes and soft long-
range forces (e.g. electrostatic forces). On the other hand, resonant behavior is rarely seen in solid mechanics because the
smooth gradient of element stiffnesses leads to a very weak coupling and hence very narrow bands of resonant time steps.

Finally, the analyses herein are only concerned with the linear stability of the method. Other important resonances may
be induced by the non-linearities in the system. Some results in this direction in the vicinity of stable equilibrium points are
presented in [44]. Additionally, we note that classical techniques such as MOLLY [23], the two-force method [16,17], the
isokinetic Nosé-Hoover chain RESPA [35], and Langevin equations [1,2,39] to enhance the stability of multiple time stepping
schemes may be applicable to AVI, and may lead to improved robustness for the method. The two-force method is very
promising since it removes all instabilities in the integrator. However, it currently has two drawbacks: it can be computa-
tionally expensive and it does not extend to three or more time steps without exponentially increasing its computational
cost.

Appendix A. AVI algorithm in the r-RESPA case

The AVI algorithm in the r-RESPA case for three potentials is shown in Algorithm 2. This algorithm is identical to r-RESPA.

Algorithm 2. AVI Algorithm in the r-RESPA case for the case of three potentials

Input: x0, v0, h1, r1, r2, nsteps

Output: (xi, vi), for all i
i ¼ 0
h2 ¼ r1h1

h3 ¼ r2h2

F ¼ �h1rV1ðx0Þ � h2rV2ðx0Þ � h3rV3ðx0Þ
for n ¼ 1 to nsteps do {Outer most loop}

for j ¼ 1 to r2 do {Loop for potential V2}
for k ¼ 1 to r1 do {Loop for potential V1}

for all a do {Half-kick}
viþ1

a ¼ vi
a þ 1

2
Fa
ma

end for
xiþ1 ¼ xi þ h1viþ1 {Drift}
F ¼ �h1rV1ðxiþ1Þ
if k ¼¼ r1 then

F ¼ F � h2rV2ðxiþ1Þ
end if
if j ¼¼ r2 then

F ¼ F � h3rV3ðxiþ1Þ
end if
for all a {Half-kick}

viþ1
a ¼ viþ1

a þ 1
2

Fa
ma

end for
i ¼ iþ 1

end for
end for

end for
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Appendix B. Harmonic approximation of the lattice potential

The exact non-linear interaction potential between two masses connected by a spring is assumed to be given by:

V sðr1; r2Þ ¼
k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ

2
q

� L
� �2

;

where k is the spring constant, r1 ¼ ðx1; y1Þ is the position of the first mass, r2 ¼ ðx2; y2Þ is the position of the second, and L is
the equilibrium length of the spring. To derive a harmonic approximation, we first assume small displacements of the masses
in the x and y directions. Then the position ri of each node can be decomposed into an equilibrium position ei and a displace-
ment di ¼ ðui; viÞ. Consequently we define the x-displacement of the spring as Du ¼ u2 � u1 and the y-displacement as
Dv ¼ v2 � v1. V s can now be rewritten as a function of Du and Dv:

V sðDu;DvÞ ¼ k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDuþ LxÞ2 þ ðDvþ LyÞ2

q
� L

� �2

with Lx ¼ L cos h and Ly ¼ L sin h denoting the equilibrium lengths of the spring in the x and y directions, respectively, and h
representing the angle the spring forms with the (1,0) direction. To approximate V s, we find the Taylor expansion of V s about
ðDu;DvÞ ¼ ð0;0Þ. The resulting harmonic potential is

Vh
s ðDu;DvÞ ¼ k

2
ðDu cos hþ Dv sin hÞ2:

Now we are ready to compute the stiffness matrix K for the 2-D triangular harmonic lattice using the harmonic potential Vh
s .

We start by looking at one row of this matrix. For a given mass m0 in the lattice, it interacts with six neighboring masses
m1; . . . ;m6. These masses will be labeled in a counter-clockwise manner beginning with 1 for the mass located in the
(1,0) direction. As a result hi ¼ ði� 1Þp=6 for i ¼ 1; . . . ;6. Then the six harmonic potentials are

V1 ¼
k
2
ðu1 � u0Þ2; V4 ¼

k
2
ðu4 � u0Þ2;

V2 ¼
k
2

1
2
ðu2 � u0Þ þ

ffiffiffi
3
p

2
ðv2 � v0Þ

" #2

; V5 ¼
k
2
�1

2
ðu5 � u0Þ �

ffiffiffi
3
p

2
ðv5 � v0Þ

" #2

;

V3 ¼
k
2
�1

2
ðu3 � u0Þ þ

ffiffiffi
3
p

2
ðv3 � v0Þ

" #2

; V6 ¼
k
2

1
2
ðu6 � u0Þ �

ffiffiffi
3
p

2
ðv6 � v0Þ

" #2

and the corresponding forces on mass m0 due to potential Vi in the x and y directions are

F1x ¼ kðu1 � u0Þ; F1y ¼ 0;

F2x ¼ k
1
4
ðu2 � u0Þ þ

ffiffiffi
3
p

4
ðv2 � v0Þ

" #
; F2y ¼ k

ffiffiffi
3
p

4
ðu2 � u0Þ þ

3
4
ðv2 � v0Þ

" #
;

F3x ¼ k
1
4
ðu3 � u0Þ �

ffiffiffi
3
p

4
ðv3 � v0Þ

" #
; F3y ¼ k �

ffiffiffi
3
p

4
ðu3 � u0Þ þ

3
4
ðv3 � v0Þ

" #
;

F4x ¼ kðu4 � u0Þ; F4y ¼ 0;

F5x ¼ k
1
4
ðu5 � u0Þ þ

ffiffiffi
3
p

4
ðv5 � v0Þ

" #
; F5y ¼ k

ffiffiffi
3
p

4
ðu5 � u0Þ þ

3
4
ðv5 � v0Þ

" #
;

F6x ¼ k
1
4
ðu6 � u0Þ �

ffiffiffi
3
p

4
ðv6 � v0Þ

" #
; F6y ¼ k �

ffiffiffi
3
p

4
ðu6 � u0Þ þ

3
4
ðv6 � v0Þ

" #
:

Using these equations, K can be formed row-by-row.
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