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The Mori-Zwanzig formalism is an effective tool to derive differ-
ential equations describing the evolution of a small number of
resolved variables. In this paper we present its application to
the derivation of generalized Langevin equations and generalized
non-Markovian Fokker-Planck equations. We show how long time
scales rates and meta-stable basins can be extracted from these
equations. Numerical algorithms are proposed to discretize these
equations. An important aspect is the numerical solution of the
orthogonal dynamics equation which is a partial differential equa-
tion in a high dimensional space. We propose efficient numerical
methods to solve this orthogonal dynamics equation. In addition,
we present a projection formalism of the Mori-Zwanzig type that
is applicable to discrete maps. Numerical applications are pre-
sented from the field of Hamiltonian systems.

Mori-Zwanzig Formalism | Optimal Prediction with Memory | Generalized
Langevin Equation | Generalized Fokker-Planck Equation

Many applications such as molecular dynamics lead to the solu-
tion of a system of ordinary differential equations

du
dt

= R(u), u ∈ Rn, [1]

involving a wide range of time scales. For example the time step in
molecular dynamics simulations of proteins is 1 femto second while
typical events of interests are in the micro or milli second time scale.
Carrying out these simulations using brute force techniques is im-
practical (e.g., by integrating the equations of motion); this is one
of the main limiting factors towards greater predictability and appli-
cability. This issue can be partially addressed by techniques which
attempt to model this high dimensional system using a reduced set
of resolved variables A(u), or observables. It is not possible to for-
mulate exact equations for dA(t)/dt in closed form, that is in terms
of A only. Approximations are necessary to close the equations. An
effective approach can be derived from the Mori-Zwanzig formal-
ism [1, 2, 3], which assumes that there is a probability distribution
µ(du) conserved by the dynamics. This formalism leads to a decom-
position of dA(t)/dt in three terms [4]: a drift term which is a func-
tion ofA(t), a memory term which depends onA(s) for 0 ≤ s ≤ t,
and a fluctuating term F t. One may then replace the fluctuating term
by a stochastic process, for example white or colored noise [5, 6], to
close the system of equations.

As examples of applications in biochemistry, one might be inter-
ested in modeling the position of an ion in a membrane channel, or
the motion of the centers of mass of groups of atoms without resolv-
ing internal vibrations. It might also be desirable to model a large
number of degrees of freedom which are computationally expensive
to calculate; this is the case for example in implicit water models
where water molecules are removed from the system and replaced by
a stochastic model such as a Langevin model. Many other such ex-
amples can be found from the literature on multiscale modeling [5].

The same Mori-Zwanzig formalism can be used to derive a kind
of generalized Fokker-Planck equation for the evolution of a proba-
bility density function φt(A). This equation, contrary to the Fokker-
Planck equation for diffusive processes, contains a term function of
φt and a non-Markovian term function of past values φs, 0 ≤ s ≤ t.
We will show how all the relevant time scales in the system, eg., re-

action rates, and metastable basins can be extracted numerically from
this equation.

One of the main numerical difficulties in these equations is that
the fluctuating term F t and the memory kernels require in princi-
ple the solution of the so-called “orthogonal dynamics equation” [7]
which is a partial differential equation with n + 1 variables (recall
that u ∈ Rn). This is impractical in most real life applications where
n can be in the range 104–106. Many techniques have been devel-
oped to address this issue (see [5, 6, 7, 8] for example). We propose
a new approach to solve this equation. This approach does not re-
quire a time scale separation, wherein the variable A is assumed to
be much slower than other time scales in the system, or an adiabatic
or Markovian approximation. The method is numerically robust, eg.,
it is not sensitive to small perturbations in the data (see for exam-
ple [9] which requires solving a Volterra integral equation of the first
kind). The method has a low computational cost and can be carried
out on desktop computers.

The paper is organized as follows. We first present the standard
Mori-Zwanzig formalism. For any phase variable B, this gives an
equation for etLB where L def

=
Pn
i=1 Ri∂/∂ui is the Liouvillian.

We also derive a new formulation applicable to a discrete map M,
in which we obtain equations for MkB. This is followed by two
important equations which can be derived from the Mori-Zwanzig
formalism: the generalized Langevin equation (GLE) and general-
ized non-Markovian Fokker-Planck equation (GFPE). A numerical
discretization of the GFPE based on a Galerkin scheme is then pro-
posed along with an algorithm to calculate reactions rates and other
time scales in the system. These equations rely on the solution of
the orthogonal dynamic equations. A new algorithm to carry out this
calculation is presented. The paper ends with numerical results. The
notation def

= indicates a definition or an equality which cannot be
derived from previous statements.

Mori-Zwanzig projection
We consider the dynamical system given by Eq. [1] where u ∈ Ω ⊂
Rn. In the context of molecular dynamics of proteins, the vector u
is the set (q,p) of atom coordinates and momenta. In many contexts
it is desirable to model the dynamical system using only a subset of
variables instead of the full set u. This might be the case if one is
trying to build a coarse grained model. These problems can be for-
mulated abstractly in the following fashion. Let us denote υ(u0, t)
the solution of Eq. [1] at time t with initial conditions u(0) = u0.
A phase variable A is an m-dimensional vector valued function de-
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fined on Ω, A(u). Associated with the Liouvillian L, we define a
time evolution operator etL: [etLA](u)

def
= A(υ(u, t)).

The general model reduction problem or coarse graining prob-
lem can be formulated as: given a phase variable B and esLA
(0 ≤ s ≤ t), is it possible to approximate etLB? We call this the
closure problem. For example, B could be dA/dt. This problem is
trivial ifA is a complete set of generalized coordinates, i.e., m = n.
In most applications however, m � n, so that this (coarse-graining)
procedure may provide significant computational speed-up.

The Mori-Zwanzig procedure is a very general and powerful for-
malism to help answer such problems. From now on, we assume that
the initial conditions for u are drawn from a probability distribution
µ0. The probability distribution µt is defined by the condition

∀B,
Z
B(u)µt(du)

def
=

Z
B(υ(u, t))µ0(du).

We will assume that µt is conserved by the dynamics, i.e., µt = µ0.
We now simply denote this measure by µ.

Standard Mori-Zwanzig decomposition. The Mori-Zwanzig proce-
dure uses a projector operator P . We define P as the following con-
ditional expectation [4]:

P : B 7→ [PB](u)
def
=

Z
B(u∗) δ(A(u∗)−A(u))µ(du∗)

We say that the phase variableC is a function of phase variableD if
D(u) = D(u∗) implies C(u) = C(u∗). As an example PB is a
function ofA.

Since the Mori-Zwanzig decomposition has been derived by
many authors [1, 4], we skip the derivation and simply state the fi-
nal formula. We define the phase variable F t (fluctuating term) as
the solution of the following partial differential equation with n + 1
variables, the orthogonal dynamics equation:

F 0 = B − PB, ∂F t
∂t

= LF t − PLF t [2]

Then:

etLB = etL PB +

Z t

0

e(t−s)LPLF s ds+ F t [3]

For later convenience, we denote Sτ⊥ the evolution operator associ-
ated with the orthogonal dynamics equation:

Sτ⊥(B)
def
= eτ(I−P)(I − P)B ( = F τ ) [4]

A key point to observe in Eq. [3] is that etL PB is a function of
etLA, and etLPLF s is a function of etLA. This means that given
esLA, 0 ≤ s ≤ t, we can calculate etL PB and

R t
0

e(t−s)LPLF s ds
without knowing the fully resolved trajectory υ(u, t). In this sense,
the first two terms in the decomposition satisfy the closure problem.
The function e(t−s)LPLF s is often called the memory kernel since
it is a function of past values ofA. In addition, the last term satisfies
PF t = 0 for all t, and may therefore be called the fluctuating term.

Discrete Mori-Zwanzig decomposition.It is possible to derive a
similar looking Mori-Zwanzig decomposition where the continuous
integration over time is replaced by a discrete sum. This decompo-
sition can be useful in different contexts, when the data itself is dis-
crete, or when a discretization is applied in numerical computation.
For example, the set Ω might be divided into N cell cells and the data
A(u) could be given as a vector of length N cell such that Ai = 1
if u is in cell i and 0 otherwise. The discrete Mori-Zwanzig decom-
position can be formulated using an arbitrary mapM: u 7→ Mu.

For any phase variable A, we define: MA : u 7→ A(Mu). As a
typical example,M can be defined asM def

= e∆tL. Let us define F k
recursively by:

F 0
def
= B − PB, F k+1

def
= MF k − PMF k. [5]

The following decomposition can be obtained for an arbitrary phase
variableB, with k ≥ 1 an integer:

MkB =Mk PB +

kX
l=1

Mk−lPMF l−1 + F k [6]

This decomposition is in the same spirit as the original Mori-Zwanzig
decomposition since it satisfies the following properties: PB and
PMF l are functions of A, and PF k = 0. It can be proved by
induction.

Generalized Langevin equations
The Mori-Zwanzig decomposition can be further transformed to
reach a form more suitable to construct stochastic models of A. In
particular, this leads to a generalized Langevin equation [10]. If we
assume that the dynamics is volume preserving (∇ · R def

= 0),
then, using integration by parts and the chain rule, the memory kernel
PLF t can be shown to be equal to:

PLF t =
ˆ
(∇A −∇AH) · P[LA⊗ F t]

˜T
H def

= − ln

Z
δ(A(u∗)−A)µ(du∗)

where T is the transpose operator and ⊗ is the outer product of two
vectors. Using this result with B def

= LA along with the Mori-
Zwanzig decomposition (Eq. [3]), we get a form of the fluctuation
dissipation theorem [11, 10]:

etLLA = etL PLA

+

Z t

0

e(t−s)L ˆ(∇A −∇AH) · P[F 0 ⊗ F s]
˜T ds+ F t

[7]

where the memory kernel is related to the auto-correlation of the fluc-
tuations F t.

This equation can be further simplified to some of the usual
forms. We briefly discuss an example. Consider the case of a sep-
arable Hamiltonian system H

def
= K(p) + U(q), in the canoni-

cal ensemble (β def
= (kBT )−1), with atomic positions ql, momenta

pl, and masses ml. We may choose A to be a coordinate and its
momentum (ξ, pξ). For simplicity we further assume that the mass

m−1
ξ

def
=
P
l

1
ml

“
∂ξ
∂ql

”2

is constant. From Eq. [7], we can prove

that the equations of motion are then given by dξ/dt = pξ/mξ, and:

dpξ
dt

= −dU
dξ

+

Z t

0

e(t−s)L ˆ` d
dpξ
− βpξ
mξ

´
P[F0 Fs]

˜
ds+ Ft

[8]
with: U(ξ)

def
= −β−1 ln

Z
δ(ξ(q)− ξ) e−βU(q) dq

Fokker-Planck equation
We now derive a Fokker-Planck equation for the resolved variableA.
We have to distinguish between variable A seen as a function of u,
which is denoted byA(u), and seen as an independent variable, then
denoted a. We apply the Mori-Zwanzig projection (Eq. [3]) to the
scalar phase variable Ba

def
= L δ(A(u)− a):

etLBa = etL PBa +

Z t

0

e(t−s)LPLFs ds+ Ft [9]
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We denote φ∞(a) the equilibrium probability density function of
a = A(u). The Fokker-Planck equation assumes a simple form
if we choose an initial probability distribution of the form:

ν0(du)
def
=

φ0(A(u))

φ∞(A(u))
µ(du)

where φ0 is some given initial condition. This corresponds to a con-
strained equilibrium where variables orthogonal to a are sampled
from the equilibrium distribution while a is sampled according to
φ0. We denote φt(a) the probability density function corresponding
to the initial probability distribution ν0(du).

To obtain a Fokker-Planck equation, we need to multiply Eq. [9]
by ν0(du) and integrate over u. Using the chain rule, integration by
parts and properties of the Dirac δ functions (a long derivation), we
can show that this leads to a GFPE:

∂ψt(a)

∂t
= −Pa(LA)∇ψt(a)

+
1

φ∞(a)
∇a ·

Z
a′∈Ω

Z s=t

s=0

φ∞(a′)K(a,a′, s)T∇ψt−s(a′)da′ds

[10]
where ψt def

= φt/φ∞, and K is a tensor phase-variable:

K(a,a′, s)
def
= Pa′

`
LA(u)⊗ [Ss⊥LA(u)δ(A(u)− a)]

´
[11]

The notation Pa′ indicates explicitly the value of A(u) = a′ used
in the projection.

Numerical solution using a Galerkin discretization
We now discuss how the GFPE may be solved numerically. The di-
rect numerical calculation of the memory kernel K(a,a′, s) is diffi-
cult because of the Dirac δ function in its definition (Eq. [11]). How-
ever this becomes relatively straightforward if one uses a Galerkin
discretization of ψt. Suppose we have some basis functions Nj(a)
and:

ψt(a) ≈
NGX
j=1

ψj(t)Nj(a)

Galerkin discretization. In this section, we denote ′ a total deriva-
tive with respect to time. The Galerkin formulation is derived from
Eq. [10] by multiplying by the test function Ni(a) and integrating
over a. The coefficients ψi(t) are then solutions of the following set
of integro-differential equations:

ψ(t)
def
=
ˆ
ψ1(t), · · · , ψNG (t)

˜T
M

dψ
dt

= Ldψ(t) +

Z t

0

Lm(s)ψ(t− s) ds [12]

with the following matrices:

Mij
def
=

Z
Ni(a)Nj(a) da

[Ld]ij
def
=

Z
Nj

d
dt

“ Ni
φ∞

”
µ(du)

[Lm(s)]ij
def
= −

Z
dNj
dt
Ss⊥
“ d

dt
Ni
φ∞

”
µ(du)

For irreversible processes, [Lm(s)]ij decays when the support of Ni
and Nj are far from one another (diagonally dominant matrix) or
when s is large.

Discrete Mori-Zwanzig decomposition. A second formulation can
be obtained by taking advantage of the discrete Mori-Zwanzig for-
malism (Eq. [6]). We choose as M the time evolution operator
over ∆t: M def

= e∆tL and as Ba the scalar phase-variable
(M − I)δ(A(u) − a). Then, we obtain the following scheme
(tk = k∆t):

M(ψ(tk+1)−ψ(tk)) = L
(1)
d ψ(tk) +

kX
l=1

L(1)
m (l − 1)ψ(tk−l)

[13]
where:

[L
(1)
d ]ij

def
=

Z
Nj (M−I)

Ni
φ∞

µ(du)

[L(1)
m (l)]ij

def
= −

Z
(MNj)Sl⊥

“
(M−I)

Ni
φ∞

”
µ(du)

The notation Sl⊥ refers to the discrete orthogonal dynamics defined
by Eq. [5]. The integer superscript and the context are hopefully suf-
ficient to remove the ambiguity with Ss⊥ from Eq. [4].

This decomposition is not a finite-difference approximation in
time. In particular it gives exactly the same solution as Eq. [12] at
times k∆t. There is no time discretization error. This is because the
discrete decomposition (Eq. [6]) is an exact equation.

This formulation does not require any derivative ofNi and there-
fore is also applicable for discontinuous basis functions such as the
hat function. (Ni(x) = 1 if 0 ≤ x ≤ ∆x and 0 otherwise.) A simple
piecewise constant approximation of ψ is therefore possible. This
makes the numerical implementation relatively simple. This numeri-
cal scheme was chosen for the numerical results section on page 5.

Reaction rate and metastable basins. In many chemical systems,
metastable basins are separated by energy barriers making transition
a rare event. Calculating the rate of transition between these basins
is often of great importance. Let us consider Eq. [13], and look for
solutions of the form ψ(tn)

def
= µnl ψl. From these solutions, we

will derive the general solution of our problem. Plug in the form of
our solution in Eq. [13] and assume that the memory kernel L

(1)
m (l)

becomes negligible for l ≥ l0. Then, we obtain a polynomial eigen-
value problem:h

− µl0+1
l M + µl0l (L

(1)
d + M)

+ µl0−1
l L(1)

m (0) + · · · + L(1)
m (l0 − 1)

i
ψl = 0

All solutions to this equation can be associated with solutions of
Az = µBz with:

A
def
=

0BBBBBB@

0 I 0 · · · 0
0 0 I · · · 0
...

...
. . .

. . .
...

...
...

...
. . . I

L
(1)
m (l0 − 1) L

(1)
m (l0 − 2) · · · L

(1)
m (0) L

(1)
d + M

1CCCCCCA

B
def
=

0BBBB@
I

I
. . .

I
M

1CCCCA
and zT = (ψT , µψT , . . . , µl0 ψT ). If we assume that the eigen-
value problem Az = µBz admitsNG(l0 +1) distinct eigenvalues µl
and eigenvectors zl, we can form the general solution of our problem.
Consider the vector:

z(t0)T
def
= (ψ(t0)T ,ψ(t1)T , . . . ,ψ(tl0)T )
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for a given initial condition ψ(t0). It can be expanded in the ba-

sis zl: z(t0) =
PNG(l0+1)
l=1 clzl. By induction and using Eq. [13],

we can prove that the general solution is of the form z(tn) =PNG(l0+1)
l=1 cl(µl)

nzl, and in terms of ψ:

ψ(tn) =

NG(l0+1)X
l=1

cl(µl)
nψl [14]

where ψl is the vector formed by taking the first NG components of
zl. Note that the ψl are not linearly independent since they are in a
space of dimension NG but we do need NG(l0 + 1) such vectors to
expand the general solution.

In many chemical reactions, there is a (or a few) time scale which
is very slow compared to the other time scales in the system. This is
the case for example when an energy barrier separates two metastable
basins. That time scale can be obtained from µl. One of the eigenval-
ues must be equal to 1 and the corresponding eigenvector ψ0 is the
equilibrium distribution. All others eigenvalues in general have a real
part in the interval ]− 1, 1[. In many instances, there is a single (or a
few) eigenvalue µ1 close to 1; this is the slowest time scale in the sys-
tem. The corresponding reaction rate is given by − ln(µ1)/∆t. This
is the rate of transition across the energy barrier separating the two
most stable basins. The eigenvector ψ1 is approximately constant in
each metastable basin but changes sign between basins. The change
of sign can be used to identify precisely the boundary of metastable
sets (for additional details see [12] for example). This will be illus-
trated in the numerical results section on page 5. More generally,
all time scales in the system can be extracted from the eigenvector
decomposition, for example the first passage times. If needed the
conditional probability p(a, t|a0, 0) can be obtained.

Orthogonal dynamics equation
Both the GLE and GFPE require computing the solution of the or-
thogonal dynamics equation, which is a partial differential equation
in dimension n + 1. A direct solution is impractical in most cases.
Various strategies with low computational cost have been proposed
most notably by Lange et at. [9] and Chorin et al. [7]. In [9], the
authors reconstruct the memory kernel in the GLE from the velocity
auto-correlation; their equation is derived from Eq. [8] assuming that
P[F0 Fs] is independent of pξ. This leads to a Volterra integral equa-
tion of the first kind which is difficult to solve numerically. In [7],
a computationally efficient scheme is proposed to calculate PLF s
using a Galerkin approach.

We now assume that we have a numerical algorithm, eg., Molec-
ular Dynamics or Monte-Carlo, which allows generating samples u
with a distribution equal to (close to) the equilibrium distribution µ.
We define the following notations. N sam: number of sample pointsu;
uk0 : sample k;NG: number of basis functionsNi(a);Nmem: number
of discrete times s at which the memory term is computed. Assume
we integrate in time using some numerical procedure; we denote ukm
the sample at step m, using uk0 as initial condition.

Given a function G, there are several ways to numerically ap-
proximate PG from G(uk0). For our application, we consider a
Galerkin expansion of the form PGG(a)

def
=
P
j P jNj(a) with:

X
j

Mij P j =
1

N sam

X
k

Ni(A(uk0))G(uk0)

φ∞(A(uk0))

The pseudo-code to numerically compute F s is then given by:
For l = 0 to Nmem − 2, do

Calculate PGG withG(uk0) = F l(u
k
1)

Calculate F l+1(ukm) = F l(u
k
m+1)− (PGG)(A(ukm)),

for 0 ≤ m ≤ Nmem − 2− l
end

This is a numerical implementation of Eq. [5] whereM is the evo-
lution operator e∆tL. In the limit of taking ∆t → 0, the se-
quence F k in Eq. [5] (0 ≤ k ≤ t1/∆t) converges to F k∆t in
Eq. [2]; the single step error is O(∆t2). It is possible to derive
higher order integrators, however, in practice, statistical errors in-
curred when approximating P are larger than the time discretization
errors. The cost of this calculation is O(N sam(Nmem)2). If we apply
this to calculate the matrices in Eqns. [12] or [13], the total cost is
O(N sam(Nmem)2NG). This assumes that the basis Ni has local sup-
port. If the basis has global support, eg., Legendre polynomials, the
total cost is O(N sam(Nmem)2NG +N samNmem(NG)2).

In the presence of energy barriers, it is possible to generate sam-
plesuk0 from the constrained ensemble, that is for various a0 we gen-
erate samples lying on the surface A(u) = a0. This is sufficient to
calculate PG and the efficiency of the method becomes independent
of φ∞(a) and in particular of energy barriers alongA(u). If the sys-
tem does not exhibit large energy barriers, it is possible to carry out
this calculation using a single (a few) very long trajectory. In that case
the total cost using our approach is reduced to O(N samNmemNG) for
a basis with local support.

Accuracy and limitations
The method works irrespective of energy barriers alongA(u). How-
ever it relies on techniques to numerically estimate P . This requires
being able to efficiently sample the surface A(u) = a. Roughly
speaking, if the coordinates orthogonal to A contain metastable
basins, the number of steps in a molecular dynamics simulation re-
quired to generate N sam uncorrelated points is very large. A pre-
cise statement is beyond the scope of this paper and depends in gen-
eral on the rate of decay of the auto-correlation of B when mov-
ing on the surface A(u) = a. If we consider a simulation in the
hypersurface A(u) = a, the previous analysis (Section Reaction
rate and metastable basins) shows that the number of steps required
should be proportional to−1/ ln(maxa µ

⊥
1 (a)), where µ⊥1 (a) is the

largest eigenvalue different from 1 for the constrained dynamics with
A(u) = a. In this case, specific acceleration techniques must be
applied. We mention the technique of Zheng et al. ([13], biasing
force along ∇A and ∇FA), normal mode approximations [14], bi-
asing techniques, etc. These techniques allow lowering maxa µ

⊥
1 (a)

away from 1.
We also note that the method will be computationally expensive

to apply to problems where the dimensionality of A is large. This
is because all the functions of A become difficult to discretize in an
efficient manner. Techniques like sparse grid of Smolyak [15] may
become useful in those cases.

Numerical results
Oscillators. It is possible for some systems to calculate analytically
the fluctuating term F t. We will use such a system to check the ac-
curacy of Eqns. [5] and the pseudo-code above. Consider the case of
a particle attached to some masses with springs:

d2ξ

dt2
def
= −dU

dξ
−

NpX
i=1

ki(ξ − xi),
d2xi
dt2

def
= −ω2

i (xi − ξ)

We can derive the following equation for ξ′′ [5]:

d2ξ

dt2
= −dU

dξ
−
Z t

0

` NpX
i=1

ki cos(ωis)
´
ξ′(t− s) ds+ Ft, [15]

with: Ft
def
=

NpX
i=1

ki (C1
i cos(ωit) + C2

i sin(ωt)).

If we assume that the initial positions and momenta of the masses
xi are generated randomly according to the canonical distribution
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Fig. 1. Oscillators with ωi = i and ki = 1. The numerical solution is com-
pared with an analytical expression (Eq. [ 16 ]). Eq. [ 5 ] and the pseudo-code on
page 4 were used.

at temperature T (= (kBβ)−1), then C1
i = 1/

√
βki ηi, C2

i =
1/
√
βki ζi, with ηi and ζi normally distributed variables with vari-

ance 1 and mean 0. Consequently:

P[FtFt+s] =
1

β

NpX
i=1

ki cos(ωis) [16]

This is consistent with Eqns. [8] and [15].
To demonstrate the accuracy of Eq. [5] and its correspondence

with Eq. [2], we use Eq. [5] to calculate Ft (using the pseudo-code
above) and then calculate P[FtFt+s] as a function of s. The result is
compared with the analytical expression given by Eq. [16]. Choose
for example Np = 32 particles with ωi = i, ki = 1. As the number
of particles goes to infinity, P[FtFt+s] approximates a Dirac δ func-
tion at 0. Fig. 1 shows a comparison of Eqns. [5] and [16]. We used
a trajectory with 4 107 steps and a step size of 5 10−3. The trajectory
was generated using Langevin dynamics with a friction coefficient of
0.05 and a temperature of kBT = 1. We note that the decay of the
memory kernel happens on a time-scale comparable to the time scale
of ξ, and therefore the adiabatic approximation does not apply.

Implicit water model. It is common in molecular dynamics simula-
tions of solvated molecules (e.g., protein) to model water using an
implicit model. In that case, the water molecules are removed from
the system and replaced by a model; the mean force may be estimated
using various techniques such as the Poisson-Boltzmann equation or
the Born and Onsager models [16]. The fluctuating part is typically
approximated by a Langevin term with friction and white noise. We
revisit this problem using our approach.

We chose a small poly-peptide (alanine dipeptide) in water. This
is a 22 atom molecule. We used 450 water molecules. The box size
was 25.1

◦
A×24.5

◦
A×23

◦
A. We considered the total atomic force that

water is exerting on the protein andA is the location of the center of
mass of the protein. The memory kernel β/mP[F0 Fs] (see Eq. [8])
is shown on Fig. 2.

In that case, we could not compare with a reference solu-
tion. However the following indirect verification was conducted. In
Eq. [8], if we multiply by p(0), average over all initial conditions,
and neglect the derivative with respect to p (see [9]), we get:

d
dt
P[p(t)p(0)] = −

Z t

0

P[p(t− s)p(0)]
β

m
P[F0 Fs] ds [17]

As a way to verify our calculation of P[F0 Fs], we plot the left and
right hand sides of Eq. [17] in Fig. 2. The agreement is very good.

Non-Markovian Fokker-Planck equation. We tested our numerical
scheme to calculate the GFPE. A comparison with a direct brute force
calculation is made. We used the discrete Mori-Zwanzig scheme de-
scribed on page 3.

Consider a particle x in a double well potential given by
x2/4 (x2−2). This function has two minima at−1 and 1, and a local
maximum at 0. We attached to the particle 16 other particles using
springs, with stiffnesses chosen such that the kernel P[FtFt+s] de-
cays approximately like e−20s (see Eq. [16] and reference [5]). The
temperature was chosen such that kBT = 0.1. This corresponds to a
barrier of 2.5 kBT . We generated trajectories using a Langevin equa-
tion with a friction of 1. The time step for the integration was 0.001.
The time interval ∆t (see page 3) is equal to 0.256. In our implemen-
tation of Eq. [13], we did not generate a single long trajectory as this
would have resulted in poor statistics near −2 and 2. Instead we cre-
ated bins of size 0.0625 and in each bin we generated a fixed number
of initial conditions drawn from the constrained canonical ensemble
distribution. For each initial condition, we ran a trajectory of length
16∆t = 4096 steps. This algorithm generated accurate data with
small statistical errors.

After computing the drift matrix L
(1)
d and the memory matrices

L
(1)
m (l), we solved the GFPE numerically and compared with a brute

force calculation. The initial conditions are taken from a Gaussian
distribution centered at −1 with standard deviation 0.2. Trajectories
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Fig. 2. Top panel: memory kernel β/mP[F0 Fs] (see Eq. [ 8 ]) for fluctuating
atomic forces exerted on a protein by water molecules. Bottom panel: derivative
of the velocity auto-correlation function. We plot the left and right hand sides of
Eq. [ 17 ] as an indirect way to verify our computation of P[F0 Fs].
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Fig. 3. Probability density functions (PDF) at time 16∆t = 4.1. The label “PDF
at t = 0” corresponds to the initial distribution of x. The label “Direct simula-
tion” corresponds to an estimate of the PDF based on running many trajectories
using Langevin dynamics. The label “Fokker-Planck” corresponds to the solution
computed using Eq. [ 13 ]. The label “Equilibrium” is the reference equilibrium
distribution of x. The variable x is on the horizontal axis.
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Fig. 4. Eigenvector ψ1 vs xi. The eigenvalue for ψ1 is 0.99462. The zero of
the function separates the two metastable basins.

were run with these initial conditions and the final value of x was
recorded after 32,768 steps. This corresponds to 128∆t. The result-
ing probability density functions are shown on Fig. 3.

We computed the eigenvectors and eigenvalues of the polynomial
eigenvalue problem as described in the section “Reaction rate and
metastable basins”. One of the eigenvalues was found to be almost
equal to 1. The corresponding eigenvector matched the equilibrium
distribution. The second eigenvalue is 0.9946. The third is 0.84 and
the other eigenvalues have a smaller real part. On Fig. 4, we plot the
vectorψ1 (see Eq. [14]). As described on page 4, we expect this vec-
tor to change sign at the transition region between the two metastable
basins, x < 0 and x > 0. This is the case; we computed that the zero
of the function is near x = 0.001.

In addition the associated eigenvalue gives a rate equal to
− ln(µ1)/∆t = 0.021 [time unit]−1. We compared this rate with an
estimate based on the brute force calculation shown in Fig. 3 (cyan
curve): this gave 0.021 [time unit]−1. Transition state theory [17]
predicts 0.033 [time unit]−1, which is consistent with the fact that
a rate from transition state theory overestimates the actual rate since
re-crossing of the transition region at x = 0 is not accounted for.

On Fig. 5, we calculated the rate using the Fokker-Planck equa-
tion while varying the number of terms we keep in the memory ker-
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Fig. 5. Reaction rate, or rate of transition, vs number of terms kept in the mem-

ory sequence L
(1)
m (l). The direct simulation estimate is the horizontal line and

is equal to 0.021.

nel, that is for a given integer l on the x-axis we only keep the terms
L

(1)
m (0), . . . , L(1)

m (l−1). Fig. 5 shows the effect of the memory kernel
on the rate, which is essentially multiplied by 3.5 when we keep 10

terms in the memory kernel. For l > 9, the memory kernel L
(1)
m (l) is

small and dominated by statistical noise. This plot shows the impor-
tance of memory and the non-Markovian effects in the evolution of
φt.

Conclusion
We presented a theoretical framework and numerical techniques
to calculate generalized Langevin equations and non-Markovian
Fokker-Planck equations by sampling trajectories. A discrete form
of the Mori-Zwanzig formalism has been derived (Eq. [6]). A gen-
eralized non-Markovian Fokker-Planck equation was presented in
a general setting (Eq. [10]), along with its numerical discretization
(Eq. [13]). An algorithm to calculate the various terms in these equa-
tions is given. An important element is the procedure used to solve
the orthogonal dynamics equation numerically. The accuracy of the
method was shown with different examples, including one with ana-
lytical solutions, one with atomic forces exerted by water molecules
on a poly-peptide, and a problem with two metastable basins for the
Fokker-Planck equation. We haven’t addressed the question of esti-
mating statistical errors, and cases with large energy barriers. These
issues will be covered in subsequent publications.
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