Stanford Mechanics and Computation
(Ellen Kuhl)
(Blanked the page)
 
Line 1: Line 1:
[[Image:EllenKuhl.jpg|left]]
 
  
==Ellen Kuhl==
 
 
{| class="person"
 
! Title:
 
| Associate Professor
 
|-
 
! Lab:
 
| [http://biomechanics.stanford.edu http://biomechanics.stanford.edu]
 
|-
 
! Office:
 
| Durand 217
 
|-
 
! Phone:
 
| 650.450.0855
 
|-
 
! Email:
 
| ekuhl@stanford.edu
 
|}
 
 
===[http://biomechanics.stanford.edu/Research Research]===
 
 
Ellen's professional expertise is living matter physics, the creation of theoretical and computational models to predict the acute and chronic response of living structures to environmental changes during development and disease. Her specific interest is the multiscale modeling of growth and remodeling, the study of how living matter adapts its form and function to changes in mechanical loading, and how this adaptation can be traced back to structural alterations on the cellular or molecular levels. Growth and remodeling can be induced naturally, e.g., through elevated pressure, stress, or strain, or interventionally, e.g., through prostheses, stents, tissue grafts, or stem cell injection. Combining theories of electrophysiology, photoelectrochemistry, biophysics, and continuum mechanics, Ellen's lab has specialized in predicting the chronic loss of form and function in growing and remodeling cardiac tissue using patient-specific custom-designed finite element models.
 
 
===[http://biomechanics.stanford.edu/Publications Publications]===
 
 
Goktepe S, Wong J, Kuhl E.
 
Atrial and ventricular fibrillation -
 
Computational simulation of spiral waves in cardiac tissue.
 
submitted for publication.
 
[http://biomechanics.stanford.edu/paper/ARCHV08.pdf (download)]
 
 
Goktepe S, Kuhl E.
 
Computational modeling of electrophysiology: A novel finite element approach.
 
submitted for publication.
 
[http://biomechanics.stanford.edu/paper/IJNME08a.pdf (download)]
 
 
Zhang J, Kuhl E, Ovaert T.
 
Simulation of micro-indentation behavior of bone via a plastic-damage model.
 
submitted for publication.
 
[http://biomechanics.stanford.edu/paper/JBIOM08.pdf (download)]
 
 
Boel M, Reese S, Parker KK, Kuhl E.
 
Computational modeling of muscular thin films for cardiac repair.
 
Comp Mech. DOI: 10.1007/s00466-008-0328-5.
 
[http://biomechanics.stanford.edu/paper/CMECH08a.pdf (download)]
 
 
Krishnamurthy G, Ennis DB, Itoh A, Bothe W, Swanson-Birchill JC,
 
Karlsson M, Kuhl E, Miller DC, Ingels NB.
 
Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis.
 
Am J Physiol Heart Circ Physiol. 2008;295:H1141-H1149.
 
[http://biomechanics.stanford.edu/paper/AJPHC08.pdf (download)]
 
 
Taylor RE, Zheng C, Jackson PR, Doll JC, Chen JC, Holzbaur KRS, Besier T, Kuhl E.
 
The phenomenon of twisted growth:
 
Humeral torsion in dominant arms of high performance tennis players.
 
Comp Meth Biomech Biomed Eng.  DOI: 10.1080/10255840802178046.
 
[http://biomechanics.stanford.edu/paper/CMBBE08.pdf (download)]
 
 
Jager P, Steinmann P, Kuhl E.
 
A novel numerical framework for the threedimensional
 
modeling of brittle fracture.
 
submitted for publication.
 
[http://biomechanics.stanford.edu/paper/JAMEC08.pdf (download)]
 
 
Jager P, Schmalholz SM, Schmid DW, Kuhl E.
 
Brittle fracture during folding rocks - A finite element study.
 
Phil Mag. DOI: 10.1080/14786430802320101.
 
[http://biomechanics.stanford.edu/paper/PHILM08.pdf (download)]
 
 
Jager P, Steinmann P, Kuhl E.
 
Modeling three-dimensional crack propagation - A comparison of crack path tracking strategies.
 
Int J Num Meth Eng, DOI: 10.1002/nme.2353.
 
[http://biomechanics.stanford.edu/paper/IJNME08.pdf (download)]
 
 
Meier HA, Schlemmer M, Wagner C, Kerren A, Hagen H, Kuhl E, Steinmann P.
 
Visualization of particle interactions in granular media.
 
IEEE Trans Vis Comp Graphics. 2008;14:1-16.
 
[http://biomechanics.stanford.edu/paper/TVCG08.pdf (download)]
 
 
Himpel G, Menzel A, Kuhl E, Steinmann P.
 
Time-dependent fiber reorientation of transversely isotropic continua - Finite element formulation and consistent linearization.
 
Int J Num Meth Eng. 2008;73:1413-1433.
 
[http://biomechanics.stanford.edu/paper/IJNME07a.pdf (download)]
 
 
Jager P, Steinmann P, Kuhl E.
 
On local tracking algorithms for the simulation of three-dimensional discontinuities.
 
Comp Mech, 2008;42:395-406.
 
[http://biomechanics.stanford.edu/paper/CMECH07a.pdf (download)]
 
 
Meier HA, Steinmann P, Kuhl E.
 
Towards mulitscale computation of confined granular media - Contact forces, stresses and tangent operators.
 
Techn Mech. 2008;28:32-42.
 
[http://biomechanics.stanford.edu/paper/TMECH07.pdf (download)]
 
 
Utzinger J, Bos M, Floeck M, Menzel A, Kuhl E, Renz R, Friedrich K, Schlarb AK, Steinmann P.
 
Computational modelling of thermal impact welded PEEK/steel single lap tensile specimens. Comp Mat Sci. 2008;41:287-296.
 
[http://biomechanics.stanford.edu/paper/CMS08.pdf (download)]
 
 
Meier HA, Kuhl E, Steinmann P.
 
A note on the generation of periodic granular microstructures based on grain size distributions.
 
Int J Num Anal Meth Geomech. 2008;32:509-522.
 
[http://biomechanics.stanford.edu/paper/IJNAMG07.pdf (download)]
 
 
Kuhl E, Holzapfel GA.
 
A continuum model for remodeling in living structures.
 
J Mat Sci. 2007;42:8811-8823.
 
[http://biomechanics.stanford.edu/paper/JMS07.pdf (download)]
 
 
Hauret P, Kuhl E, Ortiz M.
 
Diamond elements: A finite-element / discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity.
 
Int J Num Meth Eng. 2007;72:253-294.
 
[http://biomechanics.stanford.edu/paper/IJNME07.pdf (download)]
 
 
Kuhl E, Maas R, Himpel G, Menzel A.
 
Computational modeling of arterial wall growth:  Attempts towards patient specific simulations based on computer tomography.
 
Biomech Mod Mechanobio. 2007;6:321-331.
 
[http://biomechanics.stanford.edu/paper/BMMB06.pdf (download)]
 
 
Hirschberger CB, Kuhl E, Steinmann P.
 
On deformational and configurational mechanics of micromorphic hyperelasticity - Theory and computation.
 
Comp Meth Appl Mech Eng. 2007;196:4027-4044.
 
[http://biomechanics.stanford.edu/paper/CMAME07.pdf (download)]
 
 
Kuhl E, Schmid DW.
 
Computational modeling of mineral unmixing and growth - An application of the Cahn-Hilliard equation.
 
Comp Mech. 2007;39:439-451.
 
[http://biomechanics.stanford.edu/paper/CMECH07.pdf (download)]
 
 
Mergheim J, Kuhl E, Steinmann P.
 
Towards the algorithmic treatment of 3D strong discontinuities.
 
Comm Num Meth Eng. 2007;23:97-108.
 
[http://biomechanics.stanford.edu/paper/CNME07.pdf (download)]
 
 
Wells G, Kuhl E, Garikipati K.
 
A discontinuous Galerkin formulation for the Cahn-Hilliard equation.
 
J Comp Phys. 2006;218:860-877.
 
[http://biomechanics.stanford.edu/paper/JCP06.pdf (download)]
 
 
Kuhl E, Menzel A, Garikipati K.
 
On the convexity of transversely isotropic chain network models.
 
Phil Mag. 2006;86:3241-3258.
 
[http://biomechanics.stanford.edu/paper/PHILMAG06.pdf (download)]
 
 
Kuhl E, Askes H, Steinmann P.
 
An illustration of the equivalence of the loss of ellipticity conditions in spatial and material settings of hyperelasticity.
 
Eur J Mech/A: Solids. 2006;25:199-214.
 
[http://biomechanics.stanford.edu/paper/EMECH06.pdf (download)]
 
 
Kuhl E, Garikipati K, Arruda EM, Grosh K.
 
Remodeling of biological tissue - Mechanically induced reorientation of a transversely isotropic chain network.
 
J Mech Phys Solids. 2005;53:1552-1573.
 
[http://biomechanics.stanford.edu/paper/JMPS05.pdf (download)]
 
 
Kuhl E, Balle F.
 
Computational modeling of hip replacement surgery - Total hip replacement vs. hip resurfacing.
 
Techn Mech. 2005;25:107-114.
 
[http://biomechanics.stanford.edu/paper/TMECH05.pdf (download)]
 
 
Himpel G, Kuhl E, Menzel A, Steinmann P.
 
Computational modelling of isotropic multiplicative growth.
 
Comp Meth Eng Sci. 2005;8:119-134.
 
[http://biomechanics.stanford.edu/paper/CMES05.pdf (download)]
 
 
Mergheim J, Kuhl E, Steinmann P.
 
A finite element method for the computational modelling of cohesive cracks.
 
Int J Num Meth Eng. 2005;63:276-289.
 
[http://biomechanics.stanford.edu/paper/IJNME05.pdf (download)]
 
 
Kuhl E, Steinmann P.
 
A hyperelastodynamic ALE formulation based on referential, spatial and material forces. Acta Mech. 2005;174:201-222.
 
[http://biomechanics.stanford.edu/paper/ACTA05.pdf (download)]
 
 
Askes H, Bargmann S, Kuhl E, Steinmann P.
 
Structural optimisation by simultaneous equilibration of spatial and material forces.
 
Comm Num Meth Eng. 2005:21;433-442.
 
[http://biomechanics.stanford.edu/paper/CNME05.pdf (download)]
 
 
Kuhl E, Steinmann P.
 
Computational modeling of healing - An application of the material force method.
 
Biomech Mod Mechanobio. 2004;2:187-203.
 
[http://biomechanics.stanford.edu/paper/BMMB04.pdf (download)]
 
 
Kuhl E, Askes H, Steinmann P.
 
An ALE formulation based on spatial and material settings of continuum mechanics, Part 1: Generic hyperelastic formulation.
 
Comp Meth Appl Mech Eng. 2004;193:4207-4222.
 
[http://biomechanics.stanford.edu/paper/CMAME04a.pdf (download)]
 
 
Askes H, Kuhl E, Steinmann P.
 
An ALE formulation based on spatial and material settings of continuum mechanics, Part 2: Classification and applications.
 
Comp Meth Appl Mech Eng. 2004;193:4223-4245.
 
[http://biomechanics.stanford.edu/paper/CMAME04b.pdf (download)]
 
 
Kuhl E, Denzer R, Barth FJ, Steinmann P.
 
Application of the material force method to thermo-hyperelasticity.
 
Comp Meth Appl Mech Eng. 2004;193:3303-3326.
 
[http://biomechanics.stanford.edu/paper/CMAME04c.pdf (download)]
 
 
Mergheim J, Kuhl E, Steinmann P.
 
A hybrid discontinuous Galerkin/interface method for the computational modelling of failure.
 
Comm Num Meth Eng. 2004;20:511-519.
 
[http://biomechanics.stanford.edu/paper/CNME04.pdf (download)]
 
 
Kuhl E, Steinmann P.
 
Material forces in open system mechanics.
 
Comp Meth Appl Mech Eng. 2004;193:2357-2381.
 
[http://biomechanics.stanford.edu/paper/CMAME04.pdf (download)]
 
 
Kuhl E, Menzel A, Steinmann P.
 
Computational modeling of growth - A critical review, a classification of concepts and two new consistent approaches.
 
Comp Mech. 2003;32:71-88.
 
[http://biomechanics.stanford.edu/paper/CMECH03.pdf (download)]
 
 
Kuhl E, P Steinmann P.
 
Theory and numerics of geometrically nonlinear open systems
 
Int J Num Meth Eng. 2003;58:1593-1615.
 
[http://biomechanics.stanford.edu/paper/IJNME03a.pdf (download)]
 
 
Kuhl E, Steinmann P.
 
On spatial and material settings of thermo-hyperelastodynamics for open systems.
 
Acta Mech. 2003;160:179-217.
 
[http://biomechanics.stanford.edu/paper/ACTA03.pdf (download)]
 
 
Kuhl E, Steinmann P.
 
Mass- and volume specific views on thermodynamics for open systems.
 
Proc Roy Soc. 2003;459:2547-2568.
 
[http://biomechanics.stanford.edu/paper/ROYAL03.pdf (download)]
 
 
Kuhl E, Hulshoff S, de Borst R.
 
An arbitrary Lagrangian Eulerian finite-element approach for fluid-structure interaction phenomena.
 
Int J Num Meth Eng. 2003;57:117-142.
 
[http://biomechanics.stanford.edu/paper/IJNME03.pdf (download)]
 
 
Kuhl E, Carol I, Steinmann P.
 
New thermodynamic approach to microplane model. Part II: Dissipation and inelastic constitutive modelling.
 
Int J Solids Structures. 2001;38:2933-2952.
 
[http://biomechanics.stanford.edu/paper/IJSS01.pdf (download)]
 
 
Kuhl E, Ramm E, Willam KJ.
 
Failure analysis for elasto-plastic material models on different levels of observation. Int J Solids Structures. 2000;37:7259-7280.
 
[http://biomechanics.stanford.edu/paper/IJSS00.pdf (download)]
 
 
Kuhl E, Ramm E, de Borst R.
 
An anisotropic gradient damage model for quasi-brittle materials.
 
Comp Meth Appl Mech Eng. 2000;183:87-103.
 
[http://biomechanics.stanford.edu/paper/CMAME00.pdf (download)]
 
 
Kuhl E, Ramm E.
 
Microplane modelling of cohesive frictional materials.
 
Eur J Mech/A:Solids; 2000;19:S121-S143.
 
[http://biomechanics.stanford.edu/paper/EMECH00.pdf (download)]
 
 
Kuhl E, D'Addetta GA, Herrmann HJ, Ramm E.
 
A comparison of discrete granular material models with continuous microplane formulations.
 
Granular Matter. 2000;2:123-135.
 
[http://biomechanics.stanford.edu/paper/GRANMA00.pdf (download)]
 
 
Kuhl E, Ramm E.
 
Simulation of strain localization with gradient enhanced damage models.
 
Comp Mat Sci. 1999;16:176-185.
 
[http://biomechanics.stanford.edu/paper/CMS99.pdf (download)]
 
 
Mahnken R, Kuhl E.
 
Parameter identification of gradient enhanced damage models with the finite element method
 
Eur J Mech/A: Solids. 1999;18:819-835.
 
[http://biomechanics.stanford.edu/paper/EMECH99.pdf (download)]
 
 
Kuhl E, Ramm E.
 
On the linearization of the microplane model.
 
Mech Coh Fric Mat. 1998;2:343-364.
 
[http://biomechanics.stanford.edu/paper/MCFM98.pdf (download)]
 
 
Steinmann P, Kuhl E, Stein E.
 
Aspects of non-associated single crystal plasticity: Influence of Non-Schmid effects and localization analysis.
 
Int J Solids Structurs. 1998;35:4437-4456.
 
[http://biomechanics.stanford.edu/paper/IJSS98.pdf (download)]
 
 
Sawischlewski E, Steinmann P, Stein E.
 
Modelling and computations of instability phenomena in multisurface plasticity.
 
Comp Mech. 1996;18:245-258.
 
[http://biomechanics.stanford.edu/paper/CMECH96.pdf (download)]
 

Latest revision as of 22:35, 30 May 2017