Stanford Mechanics and Computation
(Microscale Devices)
Line 14: Line 14:
 
biochemical signaling behavior of healthy and diseased cells, will become increasingly tractable. A particular challenge along these lines lies in the multiscale modeling of biomechanical phenomena bridging the gap between the discrete cell level and the continuous tissue level. The potential scientific and technological impact of computational bioengineering can hardly be overstated. The group is playing an active part in this research effort at Stanford with current collaborative projects with the School of Medicine in areas such as the modeling of the mechanics of the ear and hearing, the eye and vision, growth and remodeling, simulation of proteins and mechanically gated ion channels, tissue engineering and stem cell differentiation.
 
biochemical signaling behavior of healthy and diseased cells, will become increasingly tractable. A particular challenge along these lines lies in the multiscale modeling of biomechanical phenomena bridging the gap between the discrete cell level and the continuous tissue level. The potential scientific and technological impact of computational bioengineering can hardly be overstated. The group is playing an active part in this research effort at Stanford with current collaborative projects with the School of Medicine in areas such as the modeling of the mechanics of the ear and hearing, the eye and vision, growth and remodeling, simulation of proteins and mechanically gated ion channels, tissue engineering and stem cell differentiation.
  
===Microscale Devices===
+
===Microscale Mechanical Measurements===
 
+
''Micro­scale devices'' are micro­machined sensors for system monitoring and modeling and are also used for measuring nanoscale mechanical behavior. In the Mechanics and Computation Group we have a special interest in the biomedical applications of nanofabricated devices with the goal of developing diagnostic tools, measurement and analysis systems, and reliable manufacture methods. Active projects include piezoresistive MEMS underwater shear stress sensor, piezoresistive processing, cell stimulation and force measurements, understanding the biological sense of touch, and coaxial tip piezoresistive probes for scanning gate microscopy.
+
  
 +
'Micro­scale devices for system monitoring and modeling are also used for measuring nanoscale mechanical behavior. In the Mechanics and Computation Group we have a special interest in micro and nanoscale mechanical behavior, including material properties and the biomedical applications of nanofabricated devices. Research includes developing diagnostic tools, measurement and analysis systems, and reliable manufacture methods. Active projects include piezoresistive force sensing and optimal processing, cell stimulation and force measurements, understanding the biological sense of touch, and silicon probes for microscopy and sensing.
  
 
==Facilities==
 
==Facilities==

Revision as of 12:13, 29 September 2007