

GPU name GeForce
GTX280

GeForce
9800GTX

GeForce
8800GTX

GeForce
8600GTS

of vector cores 30 16 16 4
core clock, GHz 1.30 1.67 1.35 1.45

registers/core 64KB 32KB 32KB 32KB
smem/core 16KB 16KB 16KB 16KB

memory bus, GHz 1.1 1.1 0.9 1.0
memory bus, pins 512 256 384 128
bandwidth, GB/s 141 70 86 32
memory amount 1GB 512MB 768MB 256MB
SP, peak Gflop/s 624 429 346 93
SP, peak per core 21 27 22 23

SP, flops:word 18 25 16 12
DP, peak Gflop/s 78 — — —
DP, flops:word 4.4 — — —

Table 1: The list of the GPUs used in this study. SP is single pre-
cision and DP is double precision. Smem is shared memory. Peak
flop rates are shown for multiply and add operations. Flops:word

is the ratio of peak Gflop/s rate to pin-memory bandwidth in
words.

Benchmarking GPUs to Tune Dense Linear Algebra

Vasily Volkov

Computer Science Division
University of California at Berkeley

James W. Demmel

Computer Science Division and Department of Mathematics
University of California at Berkeley

Abstract
We present performance results for dense linear algebra using
recent NVIDIA GPUs. Our matrix-matrix multiply routine
(GEMM) runs up to 60% faster than the vendor’s implementa-
tion and approaches the peak of hardware capabilities. Our LU,
QR and Cholesky factorizations achieve up to 80–90% of the
peak GEMM rate. Our parallel LU running on two GPUs
achieves up to ~540 Gflop/s. These results are accomplished by
challenging the accepted view of the GPU architecture and pro-
gramming guidelines. We argue that modern GPUs should be
viewed as multithreaded multicore vector units. We exploit
blocking similarly to vector computers and heterogeneity of the
system by computing both on GPU and CPU. This study in-
cludes detailed benchmarking of the GPU memory system that
reveals sizes and latencies of caches and TLB. We present a
couple of algorithmic optimizations aimed at increasing paral-
lelism and regularity in the problem that provide us with slightly
higher performance.

1 Introduction
We make the following contributions. For the first time, we
show an LU, QR and Cholesky factorization that achieve com-
putational rates over 300 Gflop/s on a GPU. These are three of
the most widely used factorizations in dense linear algebra and
pave the way for the implementation of the entire LAPACK
library [Anderson et al. 1990] for the GPUs.

Our results also include performance on the 8-series of
NVIDIA GPUs that was not previously attained in the 1.5 years
since these GPUs were available. We provide new insights into
programming these and newer GPUs that help us achieve per-
formance in such basic kernels as matrix-matrix multiply that is
60% faster than those in the optimized vendor’s library
CUBLAS 1.1. Some of our codes have been licensed by
NVIDIA and included in CUBLAS 2.0. In our approach we
think of the GPU as a multithreaded vector unit and our best
algorithms were found to closely resemble earlier solutions
found for vector processors.

We perform detailed benchmarks of the GPU and reveal
some of the bottlenecks, such as access to the on-chip memory
that bounds the performance of our best codes, and kernel
launch overhead that prohibits efficient fine-grain computations.
The benchmarks reveal the structure of the GPU memory sys-
tem, including sizes and latencies of the L1 and L2 caches and
TLB. For the first time we implement and measure the perfor-
mance of a global barrier that runs entirely on the GPU. We
believe this is an important step towards operating GPUs with
lower CPU intervention.

To achieve the best performance in matrix factorizations we
use state of art techniques such as look-ahead, overlapping CPU
and GPU computation, autotuning, smarter variants of 2-level
blocking, and choosing the right memory layout; we also use a
novel algorithm with modified numerics. We analyze the per-
formance of our implementations in detail to show that all com-
ponents of the final system run at the nearly optimal rates.

Our best speedups vs. one quad core CPU are over 4 in all
three factorizations.

The rest of this paper is organized as follows. Section 2 de-

scribes the architecture of the GPUs we used, highlighting the
features common to vector architectures. Section 3 benchmarks
operations including memory transfer, kernel start-up, and bar-
riers, and uses these to analyze the performance of the panel
factorization of LU. Section 4 discusses the design and perfor-
mance evaluation of matrix multiplication. Section 5 discusses
the design of LU, QR and Cholesky, and Section 6 evaluates
their performance. Section 7 summarizes and describes future
work.

2 GPU Architecture
In this work we are concerned with programming 8 series, 9
series, and 200 series of NVIDIA GPUs, as listed in Table 1. For
the description of their architecture see the CUDA programming
guide [NVIDIA 2008a], technical briefs [NVIDIA 2006;
NVIDIA 2008b] and lecture slides in the course on program-
ming GPUs at the University of Illinois, Urbana-Champaign
[Hwu and Kirk 2007]. Additional insights can be found in decu-
da1, which is a third-party disassembler of GPU binaries based
on reverse-engineering of the native instruction set. The instruc-
tion set called PTX that was released by vendor is an abstraction
that requires further compilation and so provides fewer insights.

2.1 Notation
The GPU programming model used in the CUDA programming
environment [NVIDIA 2008a] borrows much from abstractions
used in graphics, e.g. such as used in the DirectX and OpenGL
standards. GPU programs are run as collections of scalar threads
that run faster if they remain convergent in an SIMD fashion.
Similarly, individual arithmetic pipelines that execute scalar
instructions are exposed as individual processing cores. For
example, the technical brief on the latest GPU [NVIDIA 2008b]

1 http://www.cs.rug.nl/~wladimir/decuda/

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

details 240 “scalar processing cores” and 30 ”double-precision
64-bit processing cores”.

We seek a more traditional exposition of the GPU architec-
ture and attempt one below.

The CUDA manual introduces groups of 32 parallel scalar
threads called “warps”. “A warp executes one common instruc-
tion at a time” [NVIDIA 2008a, Ch. 3.1] is another way of say-
ing that warp is a stream of vector instructions. Scalar threads
are then vector elements. Similarly to other vector architectures
and unlike SIMD extensions such as Intel’s SSE, a particular
value of the vector length (VL) is not specified at the ISA level.
Instead, it can be queried in the runtime [NVIDIA 2008a, Ch.
4.2.4.5]. So, a GPU program compiled once will run on GPUs
with different vector lengths.

CUDA defines “multiprocessor” as a cluster comprised of
one instruction issue unit, 8 single precision MAD pipelines
(called SP), 2 transcendental function units (called SFU), 1
double precision MAD pipeline (we call it DP) and a 16KB
local store also called shared memory. In this collection of func-
tional units we recognize what is usually called “a core”. E.g.
one core in Intel Core2 architecture also has one instruction unit,
many arithmetic pipelines and can execute multiple scalar opera-
tions each cycle. We use term “vector core” to emphasize that
GPU cores have no scalar capabilities.

Those arrays of scalar arithmetic units on each core can be
understood as multi-lane arithmetic units that are common in
vector architectures. The purpose of replicating lanes is to in-
crease throughput. So fully pipelined SP, SFU and DP units
have throughput of 4, 16 and 32 clocks per instruction respec-
tively.

A “thread block” is defined as a collection of warps that run
on the same core and share a partition of local store. The number
of warps in the thread block is configurable. As a thread block is
usually operated in an SPMD fashion, for programming purpos-
es it can be considered as a single thread of vector instructions.
Thread block size in this case is the programmable vector
length.

2.2 Strip Mining on the GPU
Partitioning of long vectors into warps by the GPU environment
corresponds to strip mining into independent instruction streams.
This is an alternative to the more traditional strip mining into
independent instructions in the same instruction stream. For
example, an operation on a 512-element vector on a machine
with VL = 32 is traditionally performed as 16 independent vector
instructions. The GPU allows (but not requires) distributing
these 16 independent instructions across 16 instruction streams.
This is done to improve performance in branching — associat-
ing an individual program counter with a short subset of a long
vector allows skipping branches not taken by this subset rather
than masking them off.

However, strip mining into independent instruction streams
is expensive as it requires replicating register data across all
instruction streams in the thread. For example, a program oper-
ating on 512-element vectors consumes 2KB of register file per
every pointer, temporary value or scalar value defined in the
scalar thread as a 32-bit register variable.

Another associated overhead is the partitioning of the regis-
ter data into private register spaces associated with different
instruction streams in the thread. Accessing the data residing in
the register space of another warp requires staging it via the
local store, which incurs costs.

Note that the number of independent instructions supplied by
a program does not depend on the kind of strip mining used.
Whether independent instructions come in the same or different
streams, they hide memory and pipeline latencies.

To summarize, one should use as short vectors as possible to
avoid the extra costs associated with spreading the data across
many warps. See Section 3.6 for the evaluation of the minimum
vector length that does not compromise throughput and Section
4.3 for the comparison of long-vector and short-vector imple-
mentations of the same routine.

2.3 Using Register File vs. Using Shared Memory
The largest and the fastest level of the on-chip memory hie-
rarchy is the register file. It provides 32–64KB space per core
and up to 1.9MB space for the entire chip. Register-to-register
instructions achieve the peak instruction throughput if the vector
length is large enough.

Shared memory is a smaller and slower level of the on-chip
memory hierarchy. Only 16KB of shared memory is provided
per core and only one shared memory operand is allowed per
instruction (according to decuda). For example, at least two
instructions are required to copy data from one location in
shared memory to another. Furthermore, instructions that use
operands in shared memory may run at lower throughput as
found in Section 3.7.

If the algorithm permits, shared memory should be used less
intensively in favor of using the register file.

3 Microbenchmarks

3.1 Kernel Launch Overhead
The minimum time to asynchronously invoke a GPU kernel
using either the low-level or the high-level CUDA API was 3–7

s across a variety of systems equipped with different GPUs,
operating systems and CUDA versions. This was measured by
asynchronously invoking the same kernel a very large number of
times and synchronizing once at the end. The program used was
the simplest possible, such as copying one word from one loca-
tion in the GPU memory to another. This ensures that the pro-
gram runtime does not contribute substantially to the overall
time. The time increases to 10–14 s when synchronizing at
each kernel invocation. This shows the expense of synchroniza-
tion.

To ensure that we do not sacrifice performance by choosing
CUDA for programming the GPU we also measured the over-
heads in DirectX 9.0c, which is a mature graphics API widely
used in computer games. The timings were 7–8 s for invoca-
tion alone and 20–23 s for invocation with synchronization
(synchronization is required when computing with DirectX to
ensure correctness, but not in CUDA). This indicates that
CUDA is as efficient as or better than DirectX in terms of the
launch overhead.

3.2 CPU-GPU Data Transfers
Our primary system is equipped with a PCIe 1.1 16 interface
that bounds the bandwidth of the CPU-GPU link by 4 GiB/s. We
found that transferring contiguous pieces of data with sizes from
1 byte to 100 MB long across this link using pinned memory
takes about

sGB
dtransferrebytessTime

/3.3
 11 . (1)

This fits the measured data within a few percent. Similar fitting
on other systems yielded similar accuracy with different num-
bers, such as 10–17 s overheads and 2.2–3.4 GB/s bandwidths.

When using two GPUs in the system, transfer to the second
GPU run only at up to 1.8GB/s, i.e. about what one may expect
from PCIe 1.1 8. This result was obtained when using various

16 slots in the nForce 680i SLI motherboard.

0

100

200

300

400

500

600

700

800

0

50

100

150

200

250

300

350

400

450

500

550

600

4 16 64 256 1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB

cy
cl

es

la
te

nc
y,

ns

stride, bytes

5KB 5.5KB 20KB

768KB
224KB192KB

non cached, 128MB

8MB

16MB

32MB

local memory, 8KB

Figure 1: Memory latency as revealed by the pointer chasing

benchmark on GeForce 8800 GTX for different kinds of memory
accesses. Array size is shown in the boxes. Cached access

assumed unless otherwise specified. Blue, red and green lines
highlight 5KB cache, 192 KB cache, and 512KB memory pages
respectively. Solid black is non-cached access, dashed black is

local memory.

Figure 2: Summary of the memory system of 8800GTX accord-
ing to our study. Sizes of the on-chip memory levels are shown
in the same scale. Latencies shown are for the cached access.

Note the small L1 caches and large register files.

Operating with two GPUs concurrently poses new difficul-
ties. CUDA requires attaching each CPU thread to a fixed GPU
context, so multiple CPU threads must be created. According to
our experience, pinning of memory is effective only with the
GPU context that performed the memory allocation. Other GPU
contexts perform at non-pinned rates when operating with this
memory space. So, if two GPU contexts run transfers across the
same main memory locations, at least one of the contexts will
run at the non-pinned transfer rate, which is about 2 lower.

Benchmarks on a few different machines with PCIe 2.0 16
have shown 3.9–6.1 GB/s transfer rates.

3.3 GPU Memory System
The vendor’s manuals supply limited information on the GPU
caches. The CUDA programming guide specifies an 6–8KB
cache working set per vector core [NVIDIA 2008a, Ch. A.1], i.e.
96–128KB for the entire 8800GTX chip (there is also a cache
for small constant memory that we leave out of scope in this
paper). He et al. [2007] estimate the size of the 8800GTX cache
to be 392KB. None of them differentiate levels of cache. How-
ever, some of the vendor’s manuals detail one L1 cache per two
cores and six L2 caches on 8800GTX [NVIDIA 2006]. L1 cach-
es are connected with L2 caches via a crossbar.

We use a traditional pointer chasing benchmark similar to
that used, for example, in LMBench2 to reveal the latency and
structure of the memory system. It traverses an integer array A
by running k = A[k] in a long unrolled loop, yielding the time
per one iteration. This time is dominated by the latency of the
memory access. The traversal is done in one scalar thread, and
so utilizes only one GPU core and may not see caches associated
with other cores. The array is initialized with a stride, i.e. A[k] =
k + stride mod array size. We test cached and non-cached mem-
ory access to the off-chip memory and also access to the shared
memory (in which case data is first copied from the off-chip
memory and this time is later subtracted). Results for different
array sizes and strides on the 8800GTX are shown in Fig. 1.

A larger latency indicates more cache misses. The array size
defines the working set and reveals the cache size, such as 5KB
and 192KB in the Figure. The higher latency of the long-stride
non-cached access indicates the presence of a TLB, which is not

2 http://www.bitmover.com/lmbench

officially documented to the best of our knowledge. The stride
reveals cache lines and memory pages, such as 32 bytes and
512KB in the Figure. When the stride is very large, the working
set decreases until it again fits in the cache, this time producing
conflict misses if the cache is not fully associative. The data in
Fig. 1 suggests a fully associative 16-entry TLB (no TLB over-
head for 128MB array, 8MB stride), a 20-way set associative L1
cache (20KB array at 1KB stride fits in L1), and a 24-way set-
associative L2 cache (back to L2 hit latency for 768KB array,
32KB stride). These are the effective numbers and the real im-
plementation might be different. Six 4-way set-associative L2
caches match this data as well.

According to this data, L1 cache has 160 cache lines only (in
8 fully associative sets). This promises a 100% miss rate in
every cached access unless scalar threads are sufficiently coor-
dinated to share cache lines.

Fig. 1 also reveals a 470 720 cycle latency non-cached
memory access that roughly matches the official 400 600 cycle
figure [NVIDIA 2008a, Ch. 5.1.1.3].

To find the total amount of the partitioned cache memory,
we run a multithreaded test that utilizes all cores. We run one
thread per core (this is enforced by holding a large amount of
shared memory per thread), each traversing through a private
array so that their working sets do not overlap. The results match
the official data, with the effective size of L1 cache scaling with
the number of cores. Effective L2 cache size did not scale. Fig. 2
summarizes the parameters of memory system of 8800GTX
including the findings cited above. Preliminary study shows that
TLB also scales with number of cores.

Similar tests for some other GPUs in the 8-series suggested
the same sizes of L1 caches (5KB per 2 cores) and TLB (16
entries per TLB), and showed that L2 caches scale as memory
pins: 32KB for each 64 pins (to match 6 caches in the 8800
GTX [NVIDIA 2006]). Also, it matches 128MB memory per 64
memory pins on most GPUs, but twice as much on Quadro
FX5600. Our guess is that L2 GPU caches are similar in func-
tion to the hot-spot caches on the earlier highly multithreaded
processors such as Tera MTA [Alverson et al. 1990] that were
designed to alleviate contention at memory banks.

Latencies expressed in cycles were about same across few
GPUs in the 8-series. Note that an L1 cache hit costs about 280
cycles which is about half of the memory access latency. Ac-
cording to the vendor’s manual, the purpose of the GPU cache is
to reduce “DRAM bandwidth demand, but not fetch latency”
[NVIDIA 2008a, Ch. 5.1.2.4]. Interestingly, the same purpose is
followed in the design of the vector cache in the Cray BlackWi-

dow vector computer [Abts et al. 2007].
 Latency to the shared memory is an order of magnitude less

than to the cache 36 cycles. We’ll see shortly that it is close
to the pipeline latency.

3.4 Pipeline Latency
To measure pipeline latency we execute dependent operations
such as a = a * b + c or a = log2 |a| many times in an aggressive-
ly unrolled loop, one scalar thread per entire GPU. (We assume
that similarly to as done on AMD GPUs [AMD 2006], taking
absolute value of an argument does not require a separate in-
struction.) We used decuda to ensure that this operation maps to
a single native instruction for all but double precision tests
which are not supported by this tool. We made sure that arith-
metic does not overflow, but assume that execution units are not
optimized for special values of operands, such as 0 or 1. The
following table lists the average time per instruction in cycles
for GPUs in Table 1 (decimal fractions are not shown but are
0.1):

Operation Unit GTX280 other GPUs

a = a + b, a = a * b

SP

24 20

same w/ b is in smem 26 24

a = a * b + c 24 24

same w/ b is in smem 28 26

a = log2(|a|), a = rsqrt(a) SFU 28 26

a = a + b, a = a * b
DP

48 —

a = a * b + c 52 —

For example, the register-to-register multiply-and-add in-
struction runs at 24 cycles throughput per instruction. This num-
ber is 6 larger than at the peak throughput and is an estimate of
the pipeline latency. 24 cycle latency may be hidden by running
simultaneously 6 warps or 192 scalar threads per vector core,
which explains the number cited in the CUDA guide [NVIDIA
2008a, Ch. 5.1.2.6]. Note, that 6 instruction streams is the larg-
est number that may be required to hide this latency. Smaller
number may also be sufficient if instruction level parallelism is
present within the streams. This is an example where strip min-
ing into same or independent warps makes no difference.

Latency of SP and SFU pipelines is similar. Latency of the
double precision pipeline is substantially larger than in single
precision. However, less parallelism is needed if overlapping it
with other double precision instructions as they run at low
throughput.

3.5 GPU Memory Bandwidth
The table below lists pin bandwidths and their fractions attained
when copying very large blocks of data in the GPU memory.
The “aligned copy” numbers in the table are the maximum over
the rates achieved copying data in 32-, 64- and 128-bit words
(copying in 64-bit words was often slightly faster than the rest).
All other numbers in the table correspond to 32-bit words. “Mi-
saligned” implies pointers shifted one word off the aligned ad-
dress. Stride given is also in words, e.g. stride-10 means copying
every 10-th word in the array.

Stream copy on all these GPUs shows a high fraction of the
pin-bandwidth if data is aligned. GPUs earlier than GTX280
show strong deterioration when data is not aligned or non-unit-
stride. When stride is 10 or above, all GPUs run at ~10× lower
bandwidth. When stride is of order of 1000, all GPUs run at
~100× lower bandwidth.

GPU 8800GTX 8600GTS 9800GTX GTX280

at pins, GB/s 86 32 70 141

aligned copy 89% 83% 85% 89%

misaligned 9% 10% 9% 51%

stride-2 9% 10% 9% 45%

stride-10 10% 10% 9% 10%

stride-1000 0.9% 2.1% 1.1% 1.1%

3.6 Attaining Peak Instruction Throughput
We were able to achieve 98% of the arithmetic peak in register-
to-register multiply-and-add instructions. This was achieved
running a single vector thread per core. In the test, each thread
performs a group of 6 independent multiply-and-adds a million
times in an aggressively unrolled loop. This is designed to hide
the pipeline latency even at a small number of threads per core.

The smallest vector length that yielded so high a fraction of
peak was 64 elements, i.e. two warps. We couldn’t achieve
comparable rate with shorter vectors even when running many
vector threads per core.

We got similar results in double precision with 16-element
vectors. 16-element vectors were also capable of filling the SFU
pipeline but only if running many vector threads per core. Note
that both 64 and 16 differ from the native vector length of 32.

Since most of the instructions go through the SP pipeline, 64
appears to be the optimal vector length. Although the CUDA
programming guide mentions that multiples of 64 are best due to
the conflicts in accessing the register file [NVIDIA 2008a, Ch
5.1.2.6], it also discourages using such short vectors saying that
“192 or 256 threads per block is better” [NVIDIA 2008a, Ch
5.2].

3.7 Throughput when using Shared Memory
According to decuda, locations in shared memory can be used as
an instruction operand. However, our benchmarks show that
instructions that use such operands may run slower. In the fol-
lowing table a and b are in registers, s[i] is a shared memory
operand (it doesn’t matter if it is indexed or a fixed address), and
numbers are the fraction of the peak throughput:

Operation 8800GTX other GPUs in
Table 1

a+b*s[i] 66% 66%

a+a*s[i] 66% 75%

a+s[i] 74% 99%

Note that newer GPUs handle shared memory operands fast-
er. However, the most generic multiply-and-add instruction runs
at 66% of the peak on all GPUs, i.e. as it takes 6 cycles per warp
instead of the usual 4. We use these numbers for performance
modeling in Section 4.2

3.8 Global Barrier on the GPU
The CUDA programming manual assumes that a global barrier
in the GPU programs should be implemented by launching a
new kernel [NVIDIA 2008a, Ch. 5.5], i.e. synchronizing with
the CPU. This costs at least the kernel launch overhead. An ideal
global barrier would be much cheaper by communicating entire-
ly within the GPU chip. Although there is a memory crossbar on
the GPU chips, it cannot be used for communication among

0

5

10

15

20

25

30

64 128 256 512 1024 2048 4096 8192 16384 32768

G
flo

p/
s

Height of panel

Panel factorization:
CPU / GPUs / estimates

Figure 3: Gflop/s rates achieved in the LU factorization of n 64
matrices. Solid lines are sustained in factorizations using GPU

or CPU. Dashed lines are the theoretical estimates.

cores. As an early work-around, we implemented a global bar-
rier that runs entirely on the GPU, but not entirely on-chip. In
our implementation threads running on different cores commu-
nicate via the off-chip GPU memory.

Implementation of a barrier requires atomic operations on
synchronization variables. We enable this by replicating syn-
chronization variables across the entire thread array. In that case
each vector thread can update only private variables. This elimi-
nates the race conditions. In more detail, one arrival and one
wakeup variable is allocated for each vector thread. The first
vector thread is assigned to be the master and others are slaves.
The i-th slave updates the i-th arrival variable and spins on the i-
th wakeup variable until it is updated. The master thread spins
on the arrival variables until they all are updated, then updates
every wakeup variable. This implements the barrier operation.

This barrier does not guarantee that previous accesses to all
levels of the memory hierarchy have completed unless a memo-
ry consistency model is assumed.

We observed 1.3 2.0 s per barrier in a microbenchmark on
all four GPUs. This is 1.5 5.4 less than the cost of the new
kernel launch that requires synchronizing with the CPU.

3.9 Implications for Codes Based on BLAS1/2
BLAS1 and BLAS2 operations are bandwidth bound on the
GPU as their flop:word ratio is below the flop:word ratio of
GPUs. Assuming that each operation involves an average launch
overhead and all memory operations run at the sustained peak,
we get the following estimate for the GTX280:

sGB
requiredbandwidthsTime
/127

 4 . (2)

For example, BLAS1’s saxpy operation adds a multiple of one
vector to another vector and so requires 3×4×n bytes of band-
width per 2×n flops if computing in single precision. So, the flop
rate is bounded by r = (2n flops / 12n bytes) × 127 GB/s = 21
Gflop/s. This bound scales linearly with memory bandwidth.
However, half of this rate is achieved only at n1/2 = 4 s × 127
GB/s / 12 bytes 42,000. Thus, at n < 42,000, the operation
takes 4–8 s. The largest square matrix that fits into 1GB of the
GTX280 memory is 16,384×16,384. Thus, for practical square
matrix sizes saxpy and other BLAS1 routines take a large near-
ly constant time to run.

Now consider running the entire LU factorization an of n×64
matrix using BLAS1 and BLAS2 operations as done in
LAPACK’s sgetf2 code3. Such factorizations are called panel
factorizations and are used in the blocked factorization algo-
rithms. Approximating the runtime of each BLAS call in
sgetf2 using (2) we get the upper bound on the performance
that is plotted in Fig. 3. This figure also shows the rates sus-
tained in the optimized GPU implementations and in the CPU-
based solver that reads input data over PCIe 2.0 ×16 from the
GPU, computes on the 3.0GHz Core2 Quad using 64-bit Intel
MKL 10.0 and copies the result back to the GPU. In practice,
this CPU-based version outperforms the fastest GPU for all n <
10,000. Furthermore, the newer GPU does not show substantial-
ly better performance at smaller matrices and the bounds indi-
cate that this GPU has no potential to outperform the CPU ver-
sion at n < 1600.

Fig. 3 compares further a hypothetical 2× improvement in
the memory bandwidth and a 10× improvement in the overhead.
We assume that both improvements are possible to accomplish
by industry within a few years. For example, the overhead can
be improved by introducing the on-chip communication. The

3 http://www.netlib.org/lapack/single/sgetf2.f

plot clearly shows that the smaller overhead would make a dra-
matic change in the balance between the CPU and GPU perfor-
mance for small problems.

4 Design of Block Matrix-Matrix Multiply Routine
Consider evaluating the product C := C + AB, where A, B and C
are m k, k n and m n matrices resp. Partition these matrices
into M K, K N and M N grids of bm bk, bk bn and bm bn
blocks. Suppose that fast on-chip memory can hold one block in
A, B and C at the same time. Consider the ijk/jik-variant of the
algorithm that holds the block of C until all updates to it are
accumulated (other variants may involve multiple updates of C
from different threads resulting in a race condition). Then com-
puting one block in C requires fetching K blocks of A and B.
There are M N blocks in C, so in total these fetches consume
M N K bm bk + M N K bk bn = m n k (1/bn+1/bm) words of
bandwidth. This is 2/(1/bn+1/bm) times less than if no blocking
is used, i.e. if bm = bn = bk = 1. Note, that this does not depend
on bk. For example, blocks in A and B don’t have to be square
for this technique to work.

The amount of bandwidth reduction should be at least as
large as the flop:word ratio of the machine. The largest ratio
among the GPUs in this study is 25 on 9800GTX (Table 1).
However, it is only 19 if our goal is approaching 66% of the
peak arithmetic throughput as when using operands in shared
memory under the 60 GB/s cap of the peak sustained bandwidth.
This is achieved, for example, using 19×19 or larger blocks in
C.

4.1 Implementation Details
We implemented the C := AB + C and C := ABT + C cases
of matrix multiplication for matrices in column-major layout,
where and are scalars. Also, we implemented C := AAT +

C for lower-triangular C. These operations are part of BLAS3’s
GEMM and SYRK routines [Dongarra et al. 1990]. We restrict
our scope to matrix sizes that are multiples of the block sizes.

We pick a vector length of 64, which is the smallest that
yields arithmetic peak in single precision according to Section
3.6. All data parallelism above this length is explicitly strip-
mined into independent operations in the same thread program.
We orient vectors along the columns of C to enable stride-1
memory access in fetching and storing back C’s block. Similar-
ly, B’s block is chosen to be 16 16, as this enables aligned loads
for both blocks in B and BT. This leaves us with three choices for
C’s block: 16 16, 32 16 and 64 16. Larger blocks are not ne-
cessary. The two smallest blocks will require sharing A’s ele-

GPU SP peak,
Gflop/s

SGEMM(“N”, “N”, …) SSYRK(“L”, “N”, …) DP peak,
Gflop/s

DGEMM DSYRK

CUBLAS1.1 ours estimate CUBLAS2.0 ours ours CUBLAS2.0 ours

8600GTS 93 37% 60% 58% 36% 60% — — — —

8800GTX 346 37% 60% 58% 37% 60% — — — —

9800GTX 429 36% 58% 58% 36% 58% — — — —

GTX280 624 44% 60% 58% 45% 60% 78 97% 35% 95%
Table 2: The estimated and the best observed rates in matrix-matrix multiply routines shown as a fraction of the peak.

Vector length: 64 //stripmined into two warps by GPU
Registers: a, c[1:16] //each is 64-element vector
Shared memory: b[16][16] //may include padding

Compute pointers in A, B and C using thread ID
c[1:16] = 0
do
 b[1:16][1:16] = next 16 16 block in B or BT
 local barrier //wait until b[][] is written by all warps
 unroll for i = 1 to 16 do
 a = next 64 1 column of A
 c[1] += a*b[i][1] // rank-1 update of C’s block
 c[2] += a*b[i][2] // data parallelism = 1024
 c[3] += a*b[i][3] // stripmined in software
 … // into 16 operations
 c[16] += a*b[i][16] // access to b[][] is stride-1
 endfor
 local barrier //wait until done using b[][]
 update pointers in A and B
repeat until pointer in B is out of range

 Merge c[1:16] with 64 16 block of C in memory

Figure 4: The structure of our matrix-matrix multiply routines.

ments among vector elements via shared memory. But this is not
needed if we choose the 64 16 block.

The above decisions require sharing B’s block, so it is stored
in shared memory. Row-major layout is preferred as it yields
stride-1 accesses to shared memory in the inner loop of the ma-
trix-multiply which is a rank-1 update of C’s block. This layout
requires transposing B’s block in the AB case and padding the
shared memory array to avoid the bank conflicts.

Earlier versions of the code used compiler options to enforce
a tighter register budget and software prefetching. This was not
found necessary in the later code.

The resulting thread program is outlined in Fig. 4.
We launch as many threads as there are non-zero blocks in

C. Threads are created with 2D thread IDs as permitted in
CUDA. When C is triangular, a naïve implementation would be
to create as many threads as there are blocks in the full matrix
and require threads corresponding to the zero blocks to exit im-
mediately. This involves the overhead of creating and schedul-
ing ~2× more threads than necessary. A better implementation is
to cut the block index space of the triangular matrix into left and
right parts and “glue” them together into a single rectangular
piece. This requires slightly more sophisticated decoding of the
2D thread ID into the C’s block index. In a similar fashion we
programmed a routine that works with submatrices of triangular
matrices.

The code is written in CUDA’s C to offload register alloca-
tion and instruction scheduling to the compiler. Decuda was
used to control compiler’s efficiency.

We also compiled our codes into double precision by chang-
ing all “floats” into “doubles” and using proper compiler op-
tions. A minor adjustment that we did was keeping the padding
of the shared memory arrays equal to one 32-bit word. Other-
wise the padding increases producing bank conflicts.

Although we developed our algorithm independently as an
optimization over the algorithm given in the CUDA program-
ming manual, we later found that it closely resembles earlier
algorithms designed for vector processors such as one by Agar-
wal and Gustavson [1989] designed for IBM 3090 Vector Facili-
ty and Anderson et al. [2004] for the Cray X1. As in our algo-
rithm, these implementations keep blocks in A and C in the vec-
tor registers and keep the block in B in other fast memory that is
shared across different vector elements — scalar registers and
cache respectively. This similarity in the algorithms highlights
similarities in the architectures.

4.2 Performance Results and Analysis
Table 2 shows the fractions of peak and Figures 5 and 6 show
the absolute rates achieved in our implementations of matrix-
matrix multiplies. Note, that the best performance over different
GPUs is the same 58–60% of peak, i.e. it scales linearly with the
clock rate and the number of cores. This fraction approaches
66% of the peak that bounds multiply-and-add instructions with
shared memory operands. All our flops are done in such instruc-
tions.

The table does not include rates achieved in GEMM in
CUBLAS 2.0 as it is based on our code and runs at similar rates.
However, the table implies that SYRK in CUBLAS 2.0 is based
on the earlier GEMM codes.

To understand the performance of the algorithm, we perform
cycle-counting on the disassembler output (decuda). The inner
loop of the SGEMM program (both AB and ABT cases) has 312
instructions, 20 of which are memory load instructions and 256
are multiply-and-adds (MAD) with one operand in shared mem-
ory. Only MADs contribute to the flop count. Assuming that
multiply-and-adds consume 6 and all other instructions consume
4 cycles per warp, we get an estimate of 1760 cycles per loop
body per warp. 256 MADs perform 256*32*2 = 16384 flops per
warp, which is 58% of the peak value of 1760*8*2 = 28160
flops that can be done on a single core in this number of cycles.
58% of peak closely matches the observed rates as listed in Ta-
ble 2. This result implies that performance is bound by the in-
struction throughput and not memory bandwidth or latency. We
get 61% of peak in a similar estimate if assume that memory
loads are processed in parallel in a different pipeline. This may
explain why sustained values are higher than the expected num-
ber.

If slowdown in accessing shared memory were eliminated
and MAD ran at full throughput of 4 cycles, a similar estimate
would give 256/312 = 82% of the compute peak or 88% if
memory loads were done in parallel. In comparison, we get 89–
92% of peak on Core2 Duo and Quad processors when using
SGEMM in 64-bit Intel MKL 10.0.

CUBLAS 1.1 Our code

C’s block, where stored 32×32, regs 64×16, regs

A’s block, where stored 32×32, smem 64×1, regs

B’s block, where stored 32×32, smem 16×16, smem

Vector length 512 64
Scalar registers
per scalar thread 15 30

Registers per vector thread 30 KB 7.5 KB

smem per vector thread 8.3 KB 1.1 KB

Threads/core, 8800GTX 1 4

Warps/core, 8800GTX 16 8

Instructions in inner loop 115 312

MAD instructions 64 256

smem-to-register MOVs 32 0

Expected, % of peak 44% 58%

Sustained, % of peak 36–44% 58–60%
Table 3: Details of our code and the code in CUBLAS 1.1. In-
structions counts are for the inner loop only and were obtained
using decuda. A’s 64×1 blocks are given as defined in the C-

level program. This block size is increased when compiling by
unrolling the loop and assigning the blocks fetched in different

iterations to different registers.

0

50

100

150

200

250

300

350

400

64 128 256 512 1024 2048 4096

G
flo

p/
s

N

8800GTX (16 x 1.35GHz)

9800GTX (16 x 1.67GHz)

GTX280 (30 x 1.30GHz)

8600GTS (4 x 1.45GHz)
Core2 Quad, 3.0GHz

60%

58%

60%

92%
60%

Core2 Duo, 2.67GHz 89%

SGEMM,
matrices NxN

Figure 5: Rates in single precision matrix-matrix multiply on
GPUs and CPUs. Percents indicate the fractions of peak.

0

10

20

30

40

50

60

70

80

64 128 256 512 1024 2048 4096

G
flo

p/
s

N

Core2 Quad, 3.0GHz

DGEMM,
matrices NxN

97%

89%

GeForce GTX280

Figure 6: Rates in double precision matrix-matrix multiply on a
GPU and a CPU. Percents indicate the fractions of peak.

To understand how multithreading factors into the perfor-
mance we varied the number of threads running simultaneously
by allocating more shared memory than necessary and checking
the resulting occupancy using a profiler. The code performed at
32%, 49%, 58% and 59% of the peak when running 1, 2, 3 and 4
threads per core resp. on all four GPUs (with non-substantial
variations). GTX280 allows running up to 8 threads but perfor-
mance didn’t improve after 4 threads. These 4 threads per
GTX280 core correspond to 25% occupancy. This indicates that
one should not over-optimize for the occupancy, although ex-
tremely low occupancy may also hurt.

To highlight the importance of locality in accessing shared
memory, we also run a version that keeps B’s block in column-
major layout instead of row-major layout. Then the shared
memory array is scanned at large stride in the inner loop that
introduces extra 60–70 pointer arithmetic instructions in the loop
body. Resulting performance was slightly lower, at 53–56% of
peak. Thus, optimizing the locality in shared memory accesses is
a valuable technique at least for finer tuning.

According to Table 2, peak rates in SYRK are nearly the
same as in GEMM. This is natural, as the same main loop code
is used in both routines. However, the naïve solution that creates
2× more threads half of which exit immediately runs at 1.1×
lower peak rate and at up to 1.7× lower rate for some matrix
sizes. Thus, although GPUs are known for efficient multithread-
ing, unnecessary thread parallelism may result in a slowdown.

The double precision versions of these routines run at up to
95–97% of peak. This is much higher than we could expect in
single precision and is possible only because double precision
operations are much slower than other instructions and thus
consume most of the execution time.

64 16 blocking yields 25.6 reduction of bandwidth con-
sumption. Thus, 375 Gflop/s achieved on GTX280 corresponds
to 59 GB/s in reading matrices A and B, which is 46% of the
peak sustained bandwidth. In contrast, some of the earlier im-
plementations, such as Govindaraju et al. [2006] and Fatahalian
et al. [2004] are bandwidth-bound. The compute-bound imple-
mentation is due to using large blocks, which was made possible
by introduction of shared memory into the GPUs architecture.

Results for modern GPUs include 91 Gflop/s by Ryoo et al.
[2008] and 97 Gflop/s by Baskaran et al. [2008]. Both are on a
8800GTX and correspond to 26–28% of the compute peak. This
is over 2× slower than achieved in our code. They follow tradi-
tional guidelines as those outlined in the CUDA programming
guide, e.g. use longer vectors, optimize for fewer registers per
scalar thread, get higher occupancy and use shared memory as
the primary local storage space.

4.3 Comparison to CUBLAS 1.1
Table 3 compares the details of our implementation and the
implementation in CUBLAS 1.1 as was released in public do-
main by NVIDIA (sgemm_main_gld_hw_na_nb_fulltile rou-
tine). Both implementations perform the same amount of work
per vector thread computing 1024 elements in matrix C. Band-
width reduction by blocking in CUBLAS's code is 32 which is
better than 25.6 in our code. Also, CUBLAS’s code uses 2 less
registers per scalar thread and runs at higher occupancy of 2
more warps per core. However, it is 1.6 slower.

Much of this slowdown is due to the poorer instruction mix.
Both codes use MAD instructions with an operand in shared
memory. But CUBLAS holds both A’s and B’s blocks in shared
memory and so must fetch second operand before use. This
requires one MOV instruction per two MAD instructions and
results in the small fraction of MADs instructions in the loop
body — it is 56% versus 82% in our code.

The poor instruction mix in CUBLAS can be improved by

using shorter vectors. In CUBLAS 1024-element blocks in C are
strip mined at the program level into two 512-element vectors.
This allows reusing the result of each MOV two times. Strip
mining down to 64 element vectors instead would allow reusing
data 1024/64 = 16 times. Finally, if C’s block is 64 16, then the
data can be reused across an entire row of the block and there is
no need to stage it via shared memory at all. This is what is done
in our code.

However, if we use modeling as in the previous Section, we
get an estimate of 44% of the peak for the CUBLAS code that is
substantially higher than 36–37% that it sustains on all GPUs
earlier than GTX280. This might be due to the insufficient paral-
lelism to hide the memory latency. Although CUBLAS runs 2
more warps than we do, these warps come in one vector thread
synchronized with local barriers. These barriers separate memo-
ry accesses and computation, so these two do not overlap. That’s
not an issue in our code where memory accesses in one thread
may overlap with computations in several other concurrent
threads.

5 Implementation of One-Sided Matrix Factoriza-
tions
We consider the factorization of matrices that reside in the CPU
memory in column-major layout, and whose factorizations
overwrite the original data. The intention is to match the seman-
tics of the LAPACK routines [Anderson et al. 1990]. However,
for the purpose of this study we restrict our attention to square
matrices whose dimension is a multiple of the block size used.

There are three classical bulk-synchronous variants of LU
factorization — left-looking, right-looking and Crout [Dongarra
et al. 1998]. We dismiss the left-looking scheme as it does about
half its flops in triangular solves with a small number of right-
hand sides and so has limited inherent parallelism. We prefer the
right-looking algorithm to the Crout algorithm because it expos-
es more thread-level parallelism in the calls to matrix-matrix
multiply. Cholesky and QR factorizations work in the same
manner — the entire matrix is updated as soon as the next block
column is available.

Panel factorization is done on the CPU as done independent-
ly by Barrachina et al. [2008] and Baboulin et al. [2008]. How-
ever, in our implementation triangular solve in Cholesky is also
done on the CPU. The panel factorization is overlapped with
computation on the GPU using a look-ahead technique (see e.g.
Dongarra and Ostrouchov [1990] who call it pipelined updat-
ing). This requires transferring matrix panels from the GPU to
the CPU memory and back. Overlapping these transfers with
computation, enabled on the newer GPUs, is left for the future
work.

To avoid extra overhead in the transfers, the panels are
placed into their final output location when transferred to the
CPU memory. Thus panel factorization produces the final re-
sults for those locations, except for LU factorization, which
requires pivoting of the entire matrix at each panel factorization,
which is done on the GPU. The transfer of the triangular matrix
in the Cholesky factorization is done by transferring a set of
rectangular blocks that includes the triangular part. The width of
the blocks is optimized using the performance model presented
in Section 3.2.

To avoid the severely penalized strided memory access in
pivoting on the GPU, the matrix is laid out in the GPU memory
in row-major order. This involves extra overhead for the trans-
position and applies to LU factorization only. The transposition
of the square matrix is done in-place by buffering tiles in the on-
chip memory to avoid extra consumption of DRAM. When the
panel is transferred to the CPU memory and back, it is trans-
posed on the GPU using an additional, smaller, buffer in

DRAM. Pivoting is done in batches of 64 row interchanges to
amortize the kernel launch overhead. The pivot indices are
passed in as function parameters that are accessible in CUDA
via shared memory. This is to avoid the substantial bandwidth
requirements in reading the parameters from DRAM.

The upper triangular part of the output of the panel factori-
zation in the QR algorithm is not needed for the later updates
and is not transferred back to GPU. The lower triangular part is
filled in with zeros and a unit diagonal before the transfer to
create a rectangular matrix, so that it can be multiplied using a
single matrix-matrix multiply. A similar technique is used in
ScaLAPACK [Choi et al. 1996]. The same technique is used
with the small triangular matrix that arises in the panel factoriza-
tion in QR. These fill-ins are done on the CPU to overlap with
the work on the GPU and avoid paying extra GPU overheads.

Instead of running triangular solve (TRSM) in the LU de-
composition we run matrix-matrix multiply with the inverse of
the triangular matrix. The inverse is computed on the CPU. As a
result, the GPU does no other arithmetic besides matrix-matrix
multiplies. Unlike other optimizations, this may affect the nu-
merical stability of the algorithm. However, our numerical tests
so far show no difficulty and in fact the stability of either algo-
rithm depends on the essentially the same assumption, namely
that L 1 is not too large in norm, since this bounds both pivot
growth and the accuracy of the triangular solve. In the future we
might revert to triangular solve when ||L 1|| is too large.

The block size used is the same as in the matrix multiply
(64). A larger block size could reduce bandwidth consumption
and improve performance with large matrices. We address the
bandwidth consumption using two techniques.

The first technique is a variant of 2-level blocking (this was
independently done by Barrachina et al. [2008]). Both levels are
done in the right-looking manner to use a large number of
threads in the matrix multiply. A novel tweak is that we switch
to the coarse blocking level when only half the finer level is
complete. This avoids updating matrices that have too few block
columns and so offer little thread parallelism in the matrix mul-
tiplies. Note, that this approach is not a subset of the traditional
recursive blocking that was used by Barrachina et al.

A different technique is used in QR factorization, which has
a different structure of updates. We used autotuning to choose
the best block size (multiple of 64) at every stage of the algo-
rithm. Each stage is parameterized with a 3-tuple: the size of the
trailing matrix, the block size used in panel factorization and the
block size used in the update (same as used in the last panel
factorization). In the current prototype we measure the runtime
for every instance of this 3-tuple within the range of interest.
Dynamic programming is then used to choose the best sequence
of the block sizes, similarly to [Bischof and Lacroute 1990].
Block-triangular matrix multiplies are used wherever possible.

5.1 LU factorization on two GPUs
We consider using two GPUs attached to the same workstation.
We use a column-cyclic layout to distribute the matrix over two
GPUs. It is convenient, as it does not require communication in
pivoting, distributes the workload evenly and keeps CPU-GPU
data transfers simple. For example, transferring all even or odd
columns of matrix can be done with one call to a CUDA routine,
but transferring even or odd block columns requires many calls
and so many transfer overheads. Each GPU holds only its own
fraction of the matrix (even or odd columns). The exception is
the updates, which require the transfer of an entire panel to both
GPUs. The columns that do not belong to the layout are dis-
carded after the update is complete. The structure of the algo-
rithm is same as in the single-GPU case but without 2-level
blocking as in this case it requires substantial extra space for

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048 4096 8192 16384

G
flo

p/
s

Order of Matrix

QR
Cholesky
LU

78%

49%

51%

Figure 7: Rates achieved in the factorizations, percents indicate
the highest fraction of the system’s peak (GPU+CPU or CPU

only) achieved.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

64 128 256 512 1024 2048 4096 8192 16384

S
pe

ed
up

 v
s

C
or

e2
 Q

ua
d

Order of Matrix

QR
Cholesky
LU

4.4x

2.7x

GTX280

8800GTX

Figure 8: Speedup versus 3.0GHz Core2 Quad. Numbers on the
right are the best speedups.

 Q6850 8800GTX+E6700 GTX280+E6700

 Gflop/s Gflop/s speedup Gflop/s speedup

LU 73 179 2.5× 309 4.1×

Cholesky 70 183 2.7× 315 4.4×

QR 75 192 2.6× 340 4.4×

SGEMM 88 208 2.4× 375 4.3×

peak 96 388 4.0× 667 6.9×
Table 4: Comparison of best Gflop/s rates in the CPU and GPU
versions and best speedup vs. the CPU-alone versions. SGEMM

rates for the GPU+CPU systems include GPU rates only.

0

50

100

150

200

250

300

350

400

450

500

550

0 2500 5000 7500 10000 12500 15000 17500 20000 22500

G
flo

p/
s

Order of Matrix

538

309 298

179

Figure 9: Performance of one-GPU and two-GPU versions of
the LU decomposition with best rates in Gflop/s shown on right.

storing the coarser blocks.

6 Results for Matrix Factorizations
For the results in this section we used a desktop system based on
2.67GHz Core2 Duo E6700 equipped with multiple PCIe 1.1

16 slots. For the results with one or two GeForce 8800GTX we
used 32-bit Windows XP and CUDA 1.1. For the results with
GeForce GTX280 we used 64-bit Windows XP and CUDA 2.0.
CPU-only results were obtained on 3.0GHz Core2 Quad Q6850
running 64-bit Linux. In all cases the Intel MKL 10.0 library is
used for factorizations on the CPU. We noted that it runs sub-
stantially slower in 32-bit. All results are in single precision.

Input and output data are in the pinned CPU memory, which
provides a compromise between usefulness in applications (that
are likely to run on the CPU) and performance (slower transfers
to/from GPU if the data is in pageable memory). The cost of the
memory allocation is not included in the timings.

Matrices are padded to an odd multiple of 64 words. This
helps avoiding anomalous performance drops at some matrix
sizes.

The correctness of the algorithms is tested in the following
way. Input matrix A is synthesized with random entries uniform-
ly distributed in [–1,1] (to guarantee symmetric positive defi-
niteness, A = 0.001 I + XTX is used instead in testing the Cho-
lesky factorization, where X is the random matrix as described
above and I is the identity matrix). Output factors are multiplied
and max-norm of its difference with the input matrix is found.
This measures the backward error in the factorization. We found
that this error is about the same whether using our GPU-based
algorithm or the purely CPU-based algorithm in the Intel MKL
(always within a factor of 2, and within 20% in most cases). The
variant of the LU factorization that multiplies by the inverses of
the diagonal blocks of the triangular matrix has shown about
same accuracy as when running triangular solves on the GPU.
As an example, the errors as measured above in LU, QR and
Cholesky at n = 8192 are about 2000 ||A||max, 200 ||A||max and
17 ||A||max resp., where = 2–23 is machine epsilon in IEEE
single precision and ||A||max is the max-norm of A.

6.1 Summary of Performance
Fig. 7 shows the Gflop/s rates sustained in the GPU-based ma-
trix factorization routines and using Core2 Quad alone, and Fig.
8 details the speedups vs. Core2 Quad. According to the Figure,
the crossover between the GPU-based and CPU-alone imple-
mentations is around n = 1000 for all but Cholesky run on
GTX280, which is around n = 600. The best performances are
summarized in Table 4. It shows that the speedup is nearly the
same as the speedup in matrix-matrix multiply (SGEMM).
However, difference in theoretical arithmetic peak rates is sub-
stantially higher highlighting that there are more computational
resources available than we could harvest.

Fig. 9 shows the performance of the LU decomposition that
achieves 538 Gflop/s at n 21,000 by running two GPUs in
parallel. Note that a single GTX 280 yields higher rates than two
8800 GTX. See the notes below on scaling.

6.2 Performance Analysis
Fig. 10 shows the breakdown of runtime in the LU factorization
on 8800GTX. The breakdown shows that up to 90% of the run-
time is consumed by computing on the GPU and about of 10%
of this time overlaps with computing on the CPU. We expect the
GPU part to be smaller when computing with faster GPUs pro-
ducing better overlap at large matrix sizes. Time spent in the
CPU-GPU transfers is substantial at small and medium sized

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

448 704 1088 1664 2496 3648 5312 7744 11264

Ti
m

e

Order of Matrix

CPU GPU transfer

transpose
look ahead

CPU/GPU
overlap

GPU

CPU

Figure 10: The breakdown of time in the LU decomposition run on
GeForce 8800 GTX.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

64 128 256 512 1024 2048 4096 8192 16384

S
lo

w
do

w
n

Order of Matrix

overlap CPU/GPU

transpose matrix

TRSM via GEMM

batch pivoting

Figure 11: Slowdown when omitting one of the optimizations used
when running on GeForce GTX 280.

matrices and should be improved with the newer PCIe intercon-
nect supported by the newer GPUs and motherboards. Time
spent in transposing the matrices is not substantial. Individual
measurements have shown that transpose runs at 25 45 GB/s for
n > 1000. This variation in bandwidth is due to the moderate
granularity of this operation. For example, it takes ~7 s to copy
or transpose a 1024 64 matrix at the peak sustained bandwidth
of 76 GB/s, which is close to the kernel launch overhead. CPU-
GPU transfers run at 3.0 3.3 GB/s for n > 1000, which ap-
proaches the peak sustained rate.

Fig. 11 evaluates the impacts of different optimizations used
when computing on GTX280. The most important optimization
was using row-major layout on the GPU that nearly doubled the
performance at large problem sizes. Individual measurements
have shown that pivoting takes 1 10% of time in the entire
computation for n > 1500 if done in the row-major layout. In
that case it achieves 7 25 GB/s of effective bandwidth. When
using column-major layout, it takes 27 50% of the total time
and run at 0.3 1.8GB/s, with slower rates for larger matrices.

A surprisingly large speedup (up to 30%) was obtained by
performing triangular solve via multiplying by the inverse ma-
trix. Triangular solve with a 64 64 triangular matrix and 8192
right hand sides runs at 18 Gflop/s on GTX280 when using
CUBLAS 2.0. It is an order of magnitude slower than the 268
Gflop/s rate achieved in multiplying a 64 64 matrix by a
64 8192 matrix that does the same work (this is 134 Gflop/s if
not counting the redundant work).

Amortization of kernel launch overhead due to batch pivot-
ing yields 30 100% speedup at n < 1024. Effect of all optimiza-
tions decreases at larger problem sizes, where time is dominated
by matrix-matrix multiplies. Rates in these multiplies are af-
fected by using 2-level schemes in LU and Cholesky and using
autotuning to choose block size in QR. These techniques gave
up to 4 7% speedup and factored in only for n > 4096.

According to Fig. 9, using two 8800GTX yields only 67%
improvement in the peak Gflop/s rate. This result corresponds to
pre-allocating pinned memory in the master CPU thread before
GPU contexts are created in the child CPU threads. As a result,
all transfers run at a small fraction of the peak PCIe bandwidth
as if the memory was not pinned. Higher improvement of 74%
when using two GTX280 corresponds to allocating pinned
memory in one of the child CPU threads after the GPU contexts
are attached. This memory is used to store the CPU’s copy of
the matrix, i.e. both the input and output data of the routine. This
allows running transfers at full bandwidth to one of the GPUs.
There are other reasons for less than ideal scaling, such as extra
CPU-GPU bandwidth consumption, lack of 2-level blocking and
not scaling the CPU side of the system.

6.3 Comparison with Other Work
The first implementation of the LU factorization using GPUs
that we know was published by Galoppo et al. [2005] and ran at
up to ~10 Gflop/s for n = 4000 without pivoting and at ~6
Gflop/s for n = 3500 with partial pivoting on the older GeForce
7800. They use a non-blocked algorithm that is bandwidth
and/or overhead bound. Scaling these numbers with bandwidth
gives up to 26 Gflop/s on GTX280, an order of magnitude less
than in our implementation. Our solution works faster due to
large blocking enabled by shared memory. Our high perfor-
mance when pivoting is enabled by the high-bandwidth access
to linear address space available on modern GPUs.

Barrachina et al. [2008] report 50 Gflop/s in LU factoriza-
tion and 41 Gflop/s in Cholesky factorization for n = 5000 using
CUBLAS 1.0 on GeForce 8800 Ultra. Our implementation

achieves 2.9 and 3.7 higher speed for LU and Cholesky resp.
on the slightly slower 8800GTX. This is due to our improved
matrix-matrix multiply routine and the optimizations evaluated
above.

Baboulin et al. [2008] describes implementation of LU and
QR algorithms that run at up to 55 Gflop/s on Quadro FX5600
for n 19,000 using CUBLAS 1.0. This GPU has slightly slow-
er memory than 8800GTX and otherwise similar. Their imple-
mentation of Cholesky runs at up to 90 Gflop/s if using
CUBLAS and approaches 160 Gflop/s if using an early version
of the matrix multiply described in this paper and offloading
BLAS1/BLAS2 operations to the CPU. Our implementation
achieves higher rates due to a deeper performance analysis and
tuning.

Castillo et al. [2008] report results for Cholesky factoriza-
tion run on 4-GPU NVIDIA Tesla S870. Each of these GPUs is
similar to Quadro FX5600 described above. Authors report 180
Gflop/s on a system at n 10,000. We achieve this performance
using a single 8800GTX. Their result was later improved to 424
Gflop/s at n 20,000 by using the matrix multiply routine pre-
sented in this paper [Quintana-Orti et al. 2008].

7 Conclusions
We have presented the fastest (so far) implementations of dense
LU, QR and Cholesky factorizations running on a single or
double NVIDIA GPUs. Based on our performance benchmark-
ing and modeling, they attain 80% 90% of the peak speeds
possible for large matrices. This speed was achieved by careful-
ly choosing optimizations to match the capabilities of the hard-

ware, including using the CPU in parallel with the GPU to per-
form panel factorizations, which are dominated by BLAS1 and
BLAS2 operations done faster on the CPU. We also changed the
LU algorithm to use explicit inverses of diagonal subblocks of
the L factor, and showed this was both faster than and as numer-
ically stable as the conventional algorithm.

We also presented detailed benchmarks of the GPU memory
system, kernel start-up costs, and arithmetic throughput, which
are important to understanding the limits of performance of
many algorithms including our own. We highlighted some of the
optimization guidelines, such as using shorter vectors at the
program level and using register file as the primary on-chip
storage space.

Future work includes designing two-sided factorizations,
such as in dense eigenvalue problems, one-sided factorizations
on a GPU cluster and exploring the new performance opportuni-
ties offered by newer generations of GPUs.

Acknowledgements
We want to thank NVIDIA for the donated hardware, John
Nickolls for the detailed discussions on the GPU architecture,
Sam Williams for the generic discussions on computer architec-
ture, Paul Leventis for discussions on optimizing matrix-matrix
multiply, Professor Krste Asanovi for the vector insights into
the GPU architecture, John Shalf for hints on barrier synchroni-
zation, and Massimilano Fatica and Jon Kuroda for assistance in
the production of this paper.

References
ABTS, D., BATAINEH, A., SCOTT, S., FAANES, G., SCHWARZMEIER,

J., LUNDBERG, E., JOHNSON, T., BYE, M., AND SCHWOERER, G.
2007. The Cray BlackWidow: A Highly Scalable Vector Mul-
tiprocessor, SC’07.

AGARWAL R. C., AND GUSTAVSON, F.G. 1989. Vector and paral-
lel algorithms for Cholesky factorization on IBM 3090, Su-
percomputing’89, 225–233.

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B.,
PORTERFIELD, A., AND SMITH, B. 1990. The Tera Computer
System, ICS’90, 1–6.

AMD. 2006. ATI CTM Guide, version 1.01.
ANDERSON, E., BAI, Z., DONGARRA, J., GREENBAUM, A.,

MCKENNEY, A., DU CROZ, J., HAMMERLING, S., DEMMEL, J.,
BISCHOF, C., AND SORENSEN, D. 1990. LAPACK: a portable
linear algebra library for high-performance computers, Super-
computing’90, 2–11.

ANDERSON, E., BRANDT, M., AND YANG, C. 2004. LINPACK
Benchmark Optimizations on a Virtual Processor Grid, In
Cray User Group 2004 Proceedings.

BABOULIN, M., DONGARRA J., AND TOMOV, S. 2008. Some Issues
in Dense Linear Algebra for Multicore and Special Purpose
Architectures, Technical Report UT-CS-08-200, University of
Tennessee, May 6, 2008 (also LAPACK Working Note 200).

BARRACHINA, S., CASTILLO, M., IGUAL, F. D., MAYO, R, AND
QUINTANA-ORTI, E. S. 2008. Solving Dense Linear Systems
on Graphics Processors, Technical Report ICC 02-02-2008,
Universidad Jaime I, February 2008.

BASKARAN, M., BONDHUGULA, U., KRISHNAMOORTHY, S.,
RAMANUJAM, J., ROUNTEV, A., AND SADAYAPPAN, P. 2008. A
Compiler Framework for Optimization of Affine Loop Nests
for GPGPUs, ISC’08.

BISCHOF, C. H., AND LACROUTE, P. G. 1990. An adaptive block-
ing strategy for matrix factorization, in Proceedings of the
Joint International Conference on Vector and Parallel
Processing, 210–221.

CASTILLO, M., CHAN, E., IGUAL, F. D., MAYO, R., QUINTANA-

ORTI, E. S., QUINTANA-ORTI, G., VAN DE GEIJN, R., AND VAN
ZEE, F. G. 2008. Making Programming Synonymous with
Programming for Linear Algebra Libraries, FLAME Working
Note #31. The University of Texas at Austin, Department of
Computer Sciences. Technical Report TR-08-20, April 17,
2008.

CHOI, J., DONGARRA, J. J., OSTROUCHOV, L. S., PETITET, A. P.,
WALKER, D. W., AND WHALEY, R. C. 1996. The Design and
Implementation of the ScaLAPACK LU, QR, and Cholesky
Factorization Routines, Scientific Programming 5, 3, 173–184
(also LAPACK Working Note 80).

DONGARRA, J., DUFF, I. S., SORENSEN, D. C., AND VAN DER
VORST, H. A. 1998. Numerical Linear Algebra for High-
Performance Computers, SIAM.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND DUFF, I.
1990. A Set of Level 3 Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software 16, 1, 1–17.

DONGARRA, J., AND OSTROUCHOV, S. 1990. LAPACK Block
Factorization Algorithms on the Intel iPSC/860, Technical
Report CS-90-115, University of Tennessee (also LAPACK
Working Note 24).

GALOPPO, N., GOVINDARAJU, N. K., HENSON, M., AND
MANOCHA, D. 2005. LU-GPU: Efficient Algorithms for Solv-
ing Dense Linear Systems on Graphics Hardware, SC’05.

GOVINDARAJU, N. K., LARSEN, S., GRAY, J., AND MANOCHA, D.
2006. A Memory Model for Scientific Algorithms on Graphcs
Processors, SC’06.

FATAHALIAN, K., SUGERMAN, J., AND HANRAHAN, P. 2004. Un-
derstanding the efficiency of GPU algorithms for matrix-
matrix multiplication, In Graphics Hardware 2004, 133–137.

HE, B., GOVINDARAJU, N. K., LUO, Q., AND SMITH, B. 2007. Effi-
cient Gather and Scatter Operations on Graphics Processors,
SC’07.

HWU, W. W., AND KIRK, D. 2007. ECE 498 AL1: Programming
Massively Parallel Processors, Lecture Slides, University of
Illinois, Urbana-Champaign.

NVIDIA. 2006. NVIDIA GeForce 8800 GPU Architecture
Overview, Technical Brief, November 2006.

NVIDIA. 2008a. NVIDIA CUDA Compute Unified Device
Architecture, Programming Guide, Version 2.0.

NVIDIA. 2008b. NVIDIA GeForce GTX 200 GPU Architectur-
al Overview, Technical Brief, May 2008.

QUINTANA-ORTI, G., IGUAL, F. D., QUINTANA-ORTI, E. S., AND
VAN DE GEIJN, R. 2008. Solving Dense Linear Systems on
Platforms with Multiple Hardware Accelerators, FLAME
Working Note #32. The University of Texas at Austin, De-
partment of Computer Sciences. Technical Report TR-08-22.
May 9, 2008.

RYOO, S., RODRIGUES, C. I., BAGHSORKHI, S. S., STONE, S. S.,
KIRK, D. B., AND HWU, W. W. 2008. Optimization Principles
and Application Performance Evaluation of a Multithreaded
GPU using CUDA, Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, ACM Press, 2008, 73–82.

