
 

 

GPU name GeForce 
GTX280 

GeForce 
9800GTX 

GeForce 
8800GTX

GeForce 
8600GTS

# of vector cores 30 16 16 4 
core clock, GHz 1.30 1.67 1.35 1.45 

registers/core 64KB 32KB 32KB 32KB 
smem/core 16KB 16KB 16KB 16KB 

memory bus, GHz 1.1 1.1 0.9 1.0 
memory bus, pins 512 256 384 128 
bandwidth, GB/s 141 70 86 32 
memory amount 1GB 512MB 768MB 256MB 
SP, peak Gflop/s 624 429 346 93 
SP, peak per core 21 27 22 23 

SP, flops:word 18 25 16 12 
DP, peak Gflop/s 78 — — — 
DP, flops:word 4.4 — — — 

Table 1: The list of the GPUs used in this study. SP is single pre-
cision and DP is double precision. Smem is shared memory. Peak 
flop rates are shown for multiply and add operations. Flops:word 

is the ratio of peak Gflop/s rate to pin-memory bandwidth in 
words.  
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Abstract 
We present performance results for dense linear algebra using 
recent NVIDIA GPUs. Our matrix-matrix multiply routine 
(GEMM) runs up to 60% faster than the vendor’s implementa-
tion and approaches the peak of hardware capabilities. Our LU, 
QR and Cholesky factorizations achieve up to 80–90% of the 
peak GEMM rate. Our parallel LU running on two GPUs 
achieves up to ~540 Gflop/s. These results are accomplished by 
challenging the accepted view of the GPU architecture and pro-
gramming guidelines. We argue that modern GPUs should be 
viewed as multithreaded multicore vector units. We exploit 
blocking similarly to vector computers and heterogeneity of the 
system by computing both on GPU and CPU. This study in-
cludes detailed benchmarking of the GPU memory system that 
reveals sizes and latencies of caches and TLB. We present a 
couple of algorithmic optimizations aimed at increasing paral-
lelism and regularity in the problem that provide us with slightly 
higher performance. 

1 Introduction 
We make the following contributions. For the first time, we 
show an LU, QR and Cholesky factorization that achieve com-
putational rates over 300 Gflop/s on a GPU. These are three of 
the most widely used factorizations in dense linear algebra and 
pave the way for the implementation of the entire LAPACK 
library [Anderson et al. 1990] for the GPUs. 

Our results also include performance on the 8-series of 
NVIDIA GPUs that was not previously attained in the 1.5 years 
since these GPUs were available. We provide new insights into 
programming these and newer GPUs that help us achieve per-
formance in such basic kernels as matrix-matrix multiply that is 
60% faster than those in the optimized vendor’s library 
CUBLAS 1.1. Some of our codes have been licensed by 
NVIDIA and included in CUBLAS 2.0. In our approach we 
think of the GPU as a multithreaded vector unit and our best 
algorithms were found to closely resemble earlier solutions 
found for vector processors. 

We perform detailed benchmarks of the GPU and reveal 
some of the bottlenecks, such as access to the on-chip memory 
that bounds the performance of our best codes, and kernel 
launch overhead that prohibits efficient fine-grain computations. 
The benchmarks reveal the structure of the GPU memory sys-
tem, including sizes and latencies of the L1 and L2 caches and 
TLB. For the first time we implement and measure the perfor-
mance of a global barrier that runs entirely on the GPU. We 
believe this is an important step towards operating GPUs with 
lower CPU intervention. 

To achieve the best performance in matrix factorizations we 
use state of art techniques such as look-ahead, overlapping CPU 
and GPU computation, autotuning, smarter variants of 2-level 
blocking, and choosing the right memory layout; we also use a 
novel algorithm with modified numerics. We analyze the per-
formance of our implementations in detail to show that all com-
ponents of the final system run at the nearly optimal rates. 

Our best speedups vs. one quad core CPU are over 4  in all 
three factorizations. 

The rest of this paper is organized as follows. Section 2 de-

scribes the architecture of the GPUs we used, highlighting the 
features common to vector architectures. Section 3 benchmarks 
operations including memory transfer, kernel start-up, and bar-
riers, and uses these to analyze the performance of the panel 
factorization of LU. Section 4 discusses the design and perfor-
mance evaluation of matrix multiplication. Section 5 discusses 
the design of LU, QR and Cholesky, and Section 6 evaluates 
their performance. Section 7 summarizes and describes future 
work. 

2 GPU Architecture 
In this work we are concerned with programming 8 series, 9 
series, and 200 series of NVIDIA GPUs, as listed in Table 1. For 
the description of their architecture see the CUDA programming 
guide [NVIDIA 2008a], technical briefs [NVIDIA 2006; 
NVIDIA 2008b] and lecture slides in the course on program-
ming GPUs at the University of Illinois, Urbana-Champaign 
[Hwu and Kirk 2007]. Additional insights can be found in decu-
da1, which is a third-party disassembler of GPU binaries based 
on reverse-engineering of the native instruction set. The instruc-
tion set called PTX that was released by vendor is an abstraction 
that requires further compilation and so provides fewer insights. 

2.1 Notation 
The GPU programming model used in the CUDA programming 
environment [NVIDIA 2008a] borrows much from abstractions 
used in graphics, e.g. such as used in the DirectX and OpenGL 
standards. GPU programs are run as collections of scalar threads 
that run faster if they remain convergent in an SIMD fashion. 
Similarly, individual arithmetic pipelines that execute scalar 
instructions are exposed as individual processing cores. For 
example, the technical brief on the latest GPU [NVIDIA 2008b] 

                                                 
1 http://www.cs.rug.nl/~wladimir/decuda/ 
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details 240 “scalar processing cores” and 30 ”double-precision 
64-bit processing cores”. 

We seek a more traditional exposition of the GPU architec-
ture and attempt one below. 

The CUDA manual introduces groups of 32 parallel scalar 
threads called “warps”. “A warp executes one common instruc-
tion at a time” [NVIDIA 2008a, Ch. 3.1] is another way of say-
ing that warp is a stream of vector instructions. Scalar threads 
are then vector elements. Similarly to other vector architectures 
and unlike SIMD extensions such as Intel’s SSE, a particular 
value of the vector length (VL) is not specified at the ISA level. 
Instead, it can be queried in the runtime [NVIDIA 2008a, Ch. 
4.2.4.5]. So, a GPU program compiled once will run on GPUs 
with different vector lengths. 

CUDA defines “multiprocessor” as a cluster comprised of 
one instruction issue unit, 8 single precision MAD pipelines 
(called SP), 2 transcendental function units (called SFU), 1 
double precision MAD pipeline (we call it DP) and a 16KB 
local store also called shared memory. In this collection of func-
tional units we recognize what is usually called “a core”. E.g. 
one core in Intel Core2 architecture also has one instruction unit, 
many arithmetic pipelines and can execute multiple scalar opera-
tions each cycle. We use term “vector core” to emphasize that 
GPU cores have no scalar capabilities. 

Those arrays of scalar arithmetic units on each core can be 
understood as multi-lane arithmetic units that are common in 
vector architectures. The purpose of replicating lanes is to in-
crease throughput. So fully pipelined SP, SFU and DP units 
have throughput of 4, 16 and 32 clocks per instruction respec-
tively. 

A “thread block” is defined as a collection of warps that run 
on the same core and share a partition of local store. The number 
of warps in the thread block is configurable. As a thread block is 
usually operated in an SPMD fashion, for programming purpos-
es it can be considered as a single thread of vector instructions. 
Thread block size in this case is the programmable vector 
length. 

2.2 Strip Mining on the GPU 
Partitioning of long vectors into warps by the GPU environment 
corresponds to strip mining into independent instruction streams. 
This is an alternative to the more traditional strip mining into 
independent instructions in the same instruction stream. For 
example, an operation on a 512-element vector on a machine 
with VL = 32 is traditionally performed as 16 independent vector 
instructions. The GPU allows (but not requires) distributing 
these 16 independent instructions across 16 instruction streams. 
This is done to improve performance in branching — associat-
ing an individual program counter with a short subset of a long 
vector allows skipping branches not taken by this subset rather 
than masking them off. 

However, strip mining into independent instruction streams 
is expensive as it requires replicating register data across all 
instruction streams in the thread. For example, a program oper-
ating on 512-element vectors consumes 2KB of register file per 
every pointer, temporary value or scalar value defined in the 
scalar thread as a 32-bit register variable. 

Another associated overhead is the partitioning of the regis-
ter data into private register spaces associated with different 
instruction streams in the thread. Accessing the data residing in 
the register space of another warp requires staging it via the 
local store, which incurs costs. 

Note that the number of independent instructions supplied by 
a program does not depend on the kind of strip mining used. 
Whether independent instructions come in the same or different 
streams, they hide memory and pipeline latencies.  

To summarize, one should use as short vectors as possible to 
avoid the extra costs associated with spreading the data across 
many warps. See Section 3.6 for the evaluation of the minimum 
vector length that does not compromise throughput and Section 
4.3 for the comparison of long-vector and short-vector imple-
mentations of the same routine. 

2.3 Using Register File vs. Using Shared Memory 
The largest and the fastest level of the on-chip memory hie-
rarchy is the register file. It provides 32–64KB space per core 
and up to 1.9MB space for the entire chip. Register-to-register 
instructions achieve the peak instruction throughput if the vector 
length is large enough. 

Shared memory is a smaller and slower level of the on-chip 
memory hierarchy. Only 16KB of shared memory is provided 
per core and only one shared memory operand is allowed per 
instruction (according to decuda). For example, at least two 
instructions are required to copy data from one location in 
shared memory to another. Furthermore, instructions that use 
operands in shared memory may run at lower throughput as 
found in Section 3.7. 

If the algorithm permits, shared memory should be used less 
intensively in favor of using the register file. 

3 Microbenchmarks 

3.1 Kernel Launch Overhead 
The minimum time to asynchronously invoke a GPU kernel 
using either the low-level or the high-level CUDA API was 3–7 

s across a variety of systems equipped with different GPUs, 
operating systems and CUDA versions. This was measured by 
asynchronously invoking the same kernel a very large number of 
times and synchronizing once at the end. The program used was 
the simplest possible, such as copying one word from one loca-
tion in the GPU memory to another. This ensures that the pro-
gram runtime does not contribute substantially to the overall 
time. The time increases to 10–14 s when synchronizing at 
each kernel invocation. This shows the expense of synchroniza-
tion. 

To ensure that we do not sacrifice performance by choosing 
CUDA for programming the GPU we also measured the over-
heads in DirectX 9.0c, which is a mature graphics API widely 
used in computer games. The timings were 7–8 s for invoca-
tion alone and 20–23 s for invocation with synchronization 
(synchronization is required when computing with DirectX to 
ensure correctness, but not in CUDA). This indicates that 
CUDA is as efficient as or better than DirectX in terms of the 
launch overhead. 

3.2 CPU-GPU Data Transfers 
Our primary system is equipped with a PCIe 1.1 16 interface 
that bounds the bandwidth of the CPU-GPU link by 4 GiB/s. We 
found that transferring contiguous pieces of data with sizes from 
1 byte to 100 MB long across this link using pinned memory 
takes about 

sGB
dtransferrebytessTime

/3.3
 11 .               (1) 

This fits the measured data within a few percent. Similar fitting 
on other systems yielded similar accuracy with different num-
bers, such as 10–17 s overheads and  2.2–3.4 GB/s bandwidths. 

When using two GPUs in the system, transfer to the second 
GPU run only at up to 1.8GB/s, i.e. about what one may expect 
from PCIe 1.1 8. This result was obtained when using various 

16 slots in the nForce 680i SLI motherboard. 
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Figure 1: Memory latency as revealed by the pointer chasing 

benchmark on GeForce 8800 GTX for different kinds of memory 
accesses. Array size is shown in the boxes. Cached access 

assumed unless otherwise specified. Blue, red and green lines 
highlight 5KB cache, 192 KB cache, and 512KB memory pages 
respectively. Solid black is non-cached access, dashed black is 

local memory. 

Figure 2: Summary of the memory system of 8800GTX accord-
ing to our study. Sizes of the on-chip memory levels are shown 
in the same scale. Latencies shown are for the cached access. 

Note the small L1 caches and large register files.  

Operating with two GPUs concurrently poses new difficul-
ties. CUDA requires attaching each CPU thread to a fixed GPU 
context, so multiple CPU threads must be created. According to 
our experience, pinning of memory is effective only with the 
GPU context that performed the memory allocation. Other GPU 
contexts perform at non-pinned rates when operating with this 
memory space. So, if two GPU contexts run transfers across the 
same main memory locations, at least one of the contexts will 
run at the non-pinned transfer rate, which is about 2  lower. 

Benchmarks on a few different machines with PCIe 2.0 16 
have shown 3.9–6.1 GB/s transfer rates. 

3.3 GPU Memory System 
The vendor’s manuals supply limited information on the GPU 
caches. The CUDA programming guide specifies an 6–8KB 
cache working set per vector core [NVIDIA 2008a, Ch. A.1], i.e. 
96–128KB for the entire 8800GTX chip (there is also a cache 
for small constant memory that we leave out of scope in this 
paper). He et al. [2007] estimate the size of the 8800GTX cache 
to be 392KB. None of them differentiate levels of cache. How-
ever, some of the vendor’s manuals detail one L1 cache per two 
cores and six L2 caches on 8800GTX [NVIDIA 2006]. L1 cach-
es are connected with L2 caches via a crossbar. 

We use a traditional pointer chasing benchmark similar to 
that used, for example, in LMBench2 to reveal the latency and 
structure of the memory system. It traverses an integer array A 
by running k = A[k] in a long unrolled loop, yielding the time 
per one iteration. This time is dominated by the latency of the 
memory access. The traversal is done in one scalar thread, and 
so utilizes only one GPU core and may not see caches associated 
with other cores. The array is initialized with a stride, i.e. A[k] = 
k + stride mod array size. We test cached and non-cached mem-
ory access to the off-chip memory and also access to the shared 
memory (in which case data is first copied from the off-chip 
memory and this time is later subtracted). Results for different 
array sizes and strides on the 8800GTX are shown in Fig. 1. 

A larger latency indicates more cache misses. The array size 
defines the working set and reveals the cache size, such as 5KB 
and 192KB in the Figure. The higher latency of the long-stride 
non-cached access indicates the presence of a TLB, which is not 

                                                 
2 http://www.bitmover.com/lmbench 

officially documented to the best of our knowledge. The stride 
reveals cache lines and memory pages, such as 32 bytes and 
512KB in the Figure. When the stride is very large, the working 
set decreases until it again fits in the cache, this time producing 
conflict misses if the cache is not fully associative. The data in 
Fig. 1 suggests a fully associative 16-entry TLB (no TLB over-
head for 128MB array, 8MB stride), a 20-way set associative L1 
cache (20KB array at 1KB stride fits in L1), and a 24-way set-
associative L2 cache (back to L2 hit latency for 768KB array, 
32KB stride). These are the effective numbers and the real im-
plementation might be different. Six 4-way set-associative L2 
caches match this data as well. 

According to this data, L1 cache has 160 cache lines only (in 
8 fully associative sets). This promises a 100% miss rate in 
every cached access unless scalar threads are sufficiently coor-
dinated to share cache lines. 

Fig. 1 also reveals a 470 720 cycle latency non-cached 
memory access that roughly matches the official 400 600 cycle 
figure [NVIDIA 2008a, Ch. 5.1.1.3]. 

To find the total amount of the partitioned cache memory, 
we run a multithreaded test that utilizes all cores. We run one 
thread per core (this is enforced by holding a large amount of 
shared memory per thread), each traversing through a private 
array so that their working sets do not overlap. The results match 
the official data, with the effective size of L1 cache scaling with 
the number of cores. Effective L2 cache size did not scale. Fig. 2 
summarizes the parameters of memory system of 8800GTX 
including the findings cited above. Preliminary study shows that 
TLB also scales with number of cores. 

Similar tests for some other GPUs in the 8-series suggested 
the same sizes of L1 caches (5KB per 2 cores) and TLB (16 
entries per TLB), and showed that L2 caches scale as memory 
pins: 32KB for each 64 pins (to match 6 caches in the 8800 
GTX [NVIDIA 2006]). Also, it matches 128MB memory per 64 
memory pins on most GPUs, but twice as much on Quadro 
FX5600. Our guess is that L2 GPU caches are similar in func-
tion to the hot-spot caches on the earlier highly multithreaded 
processors such as Tera MTA [Alverson et al. 1990] that were 
designed to alleviate contention at memory banks. 

Latencies expressed in cycles were about same across few 
GPUs in the 8-series. Note that an L1 cache hit costs about 280 
cycles which is about half of the memory access latency. Ac-
cording to the vendor’s manual, the purpose of the GPU cache is 
to reduce “DRAM bandwidth demand, but not fetch latency” 
[NVIDIA 2008a, Ch. 5.1.2.4]. Interestingly, the same purpose is 
followed in the design of the vector cache in the Cray BlackWi-



 

 

dow vector computer [Abts et al. 2007]. 
 Latency to the shared memory is an order of magnitude less 

than to the cache  36 cycles. We’ll see shortly that it is close 
to the pipeline latency. 

3.4 Pipeline Latency 
To measure pipeline latency we execute dependent operations 
such as a = a * b + c or a = log2 |a| many times in an aggressive-
ly unrolled loop, one scalar thread per entire GPU.  (We assume 
that similarly to as done on AMD GPUs [AMD 2006], taking 
absolute value of an argument does not require a separate in-
struction.) We used decuda to ensure that this operation maps to 
a single native instruction for all but double precision tests 
which are not supported by this tool. We made sure that arith-
metic does not overflow, but assume that execution units are not 
optimized for special values of operands, such as 0 or 1. The 
following table lists the average time per instruction in cycles 
for GPUs in Table 1 (decimal fractions are not shown but are  
0.1): 
 

Operation Unit GTX280 other GPUs 

a = a + b, a = a * b 

SP 

24 20 

same w/ b is in smem 26 24 

a = a * b + c 24 24 

same w/ b is in smem 28 26 

a = log2(|a|), a = rsqrt(a) SFU 28 26 

a = a + b, a = a * b 
DP 

48 — 

a = a * b + c 52 — 
 

For example, the register-to-register multiply-and-add in-
struction runs at 24 cycles throughput per instruction. This num-
ber is 6  larger than at the peak throughput and is an estimate of 
the pipeline latency. 24 cycle latency may be hidden by running 
simultaneously 6 warps or 192 scalar threads per vector core, 
which explains the number cited in the CUDA guide [NVIDIA 
2008a, Ch. 5.1.2.6]. Note, that 6 instruction streams is the larg-
est number that may be required to hide this latency. Smaller 
number may also be sufficient if instruction level parallelism is 
present within the streams. This is an example where strip min-
ing into same or independent warps makes no difference.  

Latency of SP and SFU pipelines is similar. Latency of the 
double precision pipeline is substantially larger than in single 
precision. However, less parallelism is needed if overlapping it 
with other double precision instructions as they run at low 
throughput. 

3.5 GPU Memory Bandwidth 
The table below lists pin bandwidths and their fractions attained 
when copying very large blocks of data in the GPU memory. 
The “aligned copy” numbers in the table are the maximum over 
the rates achieved copying data in 32-, 64- and 128-bit words 
(copying in 64-bit words was often slightly faster than the rest). 
All other numbers in the table correspond to 32-bit words. “Mi-
saligned” implies pointers shifted one word off the aligned ad-
dress. Stride given is also in words, e.g. stride-10 means copying 
every 10-th word in the array. 

Stream copy on all these GPUs shows a high fraction of the 
pin-bandwidth if data is aligned. GPUs earlier than GTX280 
show strong deterioration when data is not aligned or non-unit-
stride. When stride is 10 or above, all GPUs run at ~10× lower 
bandwidth. When stride is of order of 1000, all GPUs run at 
~100× lower bandwidth. 

GPU 8800GTX 8600GTS 9800GTX GTX280 

at pins, GB/s 86 32 70 141 

aligned copy 89% 83% 85% 89% 

misaligned 9% 10% 9% 51% 

stride-2 9% 10% 9% 45% 

stride-10 10% 10% 9% 10% 

stride-1000 0.9% 2.1% 1.1% 1.1% 

3.6 Attaining Peak Instruction Throughput 
We were able to achieve 98% of the arithmetic peak in register-
to-register multiply-and-add instructions. This was achieved 
running a single vector thread per core. In the test, each thread 
performs a group of 6 independent multiply-and-adds a million 
times in an aggressively unrolled loop. This is designed to hide 
the pipeline latency even at a small number of threads per core. 

The smallest vector length that yielded so high a fraction of 
peak was 64 elements, i.e. two warps.  We couldn’t achieve 
comparable rate with shorter vectors even when running many 
vector threads per core.  

We got similar results in double precision with 16-element 
vectors. 16-element vectors were also capable of filling the SFU 
pipeline but only if running many vector threads per core. Note 
that both 64 and 16 differ from the native vector length of 32. 

Since most of the instructions go through the SP pipeline, 64 
appears to be the optimal vector length. Although the CUDA 
programming guide mentions that multiples of 64 are best due to 
the conflicts in accessing the register file [NVIDIA 2008a, Ch 
5.1.2.6], it also discourages using such short vectors saying that 
“192 or 256 threads per block is better” [NVIDIA 2008a, Ch 
5.2]. 

3.7 Throughput when using Shared Memory 
According to decuda, locations in shared memory can be used as 
an instruction operand. However, our benchmarks show that 
instructions that use such operands may run slower. In the fol-
lowing table a and b are in registers, s[i] is a shared memory 
operand (it doesn’t matter if it is indexed or a fixed address), and 
numbers are the fraction of the peak throughput: 
 

Operation 8800GTX other GPUs in 
Table 1 

a+b*s[i] 66% 66% 

a+a*s[i] 66% 75% 

a+s[i] 74% 99% 
 

Note that newer GPUs handle shared memory operands fast-
er. However, the most generic multiply-and-add instruction runs 
at 66% of the peak on all GPUs, i.e. as it takes 6 cycles per warp 
instead of the usual 4. We use these numbers for performance 
modeling in Section 4.2 

3.8 Global Barrier on the GPU 
The CUDA programming manual assumes that a global barrier 
in the GPU programs should be implemented by launching a 
new kernel [NVIDIA 2008a, Ch. 5.5], i.e. synchronizing with 
the CPU. This costs at least the kernel launch overhead. An ideal 
global barrier would be much cheaper by communicating entire-
ly within the GPU chip. Although there is a memory crossbar on 
the GPU chips, it cannot be used for communication among 
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cores. As an early work-around, we implemented a global bar-
rier that runs entirely on the GPU, but not entirely on-chip. In 
our implementation threads running on different cores commu-
nicate via the off-chip GPU memory. 

Implementation of a barrier requires atomic operations on 
synchronization variables. We enable this by replicating syn-
chronization variables across the entire thread array. In that case 
each vector thread can update only private variables. This elimi-
nates the race conditions. In more detail, one arrival and one 
wakeup variable is allocated for each vector thread. The first 
vector thread is assigned to be the master and others are slaves. 
The i-th slave updates the i-th arrival variable and spins on the i-
th wakeup variable until it  is updated. The master thread spins 
on the arrival variables until they all are updated, then updates 
every wakeup variable. This implements the barrier operation.  

This barrier does not guarantee that previous accesses to all 
levels of the memory hierarchy have completed unless a memo-
ry consistency model is assumed. 

We observed 1.3 2.0 s per barrier in a microbenchmark on 
all four GPUs. This is 1.5 5.4  less than the cost of the new 
kernel launch that requires synchronizing with the CPU. 

3.9 Implications for Codes Based on BLAS1/2 
BLAS1 and BLAS2 operations are bandwidth bound on the 
GPU as their flop:word ratio is below the flop:word ratio of 
GPUs. Assuming that each operation involves an average launch 
overhead and all memory operations run at the sustained peak, 
we get the following estimate for the GTX280: 

sGB
requiredbandwidthsTime
/127

  4  . (2) 

For example, BLAS1’s saxpy operation adds a multiple of one 
vector to another vector and so requires 3×4×n bytes of band-
width per 2×n flops if computing in single precision. So, the flop 
rate is bounded by r  = (2n flops / 12n bytes) × 127 GB/s = 21 
Gflop/s. This bound scales linearly with memory bandwidth. 
However, half of this rate is achieved only at n1/2 = 4 s × 127 
GB/s / 12 bytes   42,000. Thus, at n < 42,000, the operation 
takes 4–8 s. The largest square matrix that fits into 1GB of the 
GTX280 memory is 16,384×16,384. Thus, for practical square 
matrix sizes saxpy and other BLAS1 routines take a large near-
ly constant time to run. 

Now consider running the entire LU factorization an of n×64 
matrix using BLAS1 and BLAS2 operations as done in 
LAPACK’s sgetf2 code3. Such factorizations are called panel 
factorizations and are used in the blocked factorization algo-
rithms. Approximating the runtime of each BLAS call in 
sgetf2 using (2) we get the upper bound on the performance 
that is plotted in Fig. 3. This figure also shows the rates sus-
tained in the optimized GPU implementations and in the CPU-
based solver that reads input data over PCIe 2.0 ×16 from the 
GPU, computes on the 3.0GHz Core2 Quad using 64-bit Intel 
MKL 10.0 and copies the result back to the GPU. In practice, 
this CPU-based version outperforms the fastest GPU for all n < 
10,000. Furthermore, the newer GPU does not show substantial-
ly better performance at smaller matrices and the bounds indi-
cate that this GPU has no potential to outperform the CPU ver-
sion at n < 1600. 

Fig. 3 compares further a hypothetical 2× improvement in 
the memory bandwidth and a 10× improvement in the overhead. 
We assume that both improvements are possible to accomplish 
by industry within a few years. For example, the overhead can 
be improved by introducing the on-chip communication. The 

                                                 
3 http://www.netlib.org/lapack/single/sgetf2.f 

plot clearly shows that the smaller overhead would make a dra-
matic change in the balance between the CPU and GPU perfor-
mance for small problems. 

4 Design of Block Matrix-Matrix Multiply Routine 
Consider evaluating the product C := C + AB, where A, B and C 
are m k, k n and m n matrices resp. Partition these matrices 
into M K, K N and M N grids of bm bk, bk bn and bm bn 
blocks. Suppose that fast on-chip memory can hold one block in 
A, B and C at the same time. Consider the ijk/jik-variant of the 
algorithm that holds the block of C until all updates to it are 
accumulated (other variants may involve multiple updates of C 
from different threads resulting in a race condition). Then com-
puting one block in C requires fetching K blocks of A and B. 
There are M N blocks in C, so in total these fetches consume 
M N K bm bk + M N K bk bn = m n k (1/bn+1/bm) words of 
bandwidth. This is 2/(1/bn+1/bm) times less than if no blocking 
is used, i.e. if bm = bn = bk = 1. Note, that this does not depend 
on bk. For example, blocks in A and B don’t have to be square 
for this technique to work. 

The amount of bandwidth reduction should be at least as 
large as the flop:word ratio of the machine. The largest ratio 
among the GPUs in this study is 25 on 9800GTX (Table 1). 
However, it is only 19 if our goal is approaching 66% of the 
peak arithmetic throughput as when using operands in shared 
memory under the 60 GB/s cap of the peak sustained bandwidth. 
This is achieved, for example, using 19×19 or larger blocks in 
C. 

4.1 Implementation Details 
We implemented the C := AB + C and C := ABT + C cases 
of matrix multiplication for matrices in column-major layout, 
where  and  are scalars. Also, we implemented C := AAT + 

C for lower-triangular C. These operations are part of BLAS3’s 
GEMM and SYRK routines [Dongarra et al. 1990]. We restrict 
our scope to matrix sizes that are multiples of the block sizes. 

We pick a vector length of 64, which is the smallest that 
yields arithmetic peak in single precision according to Section 
3.6. All data parallelism above this length is explicitly strip-
mined into independent operations in the same thread program. 
We orient vectors along the columns of C to enable stride-1 
memory access in fetching and storing back C’s block. Similar-
ly, B’s block is chosen to be 16 16, as this enables aligned loads 
for both blocks in B and BT. This leaves us with three choices for 
C’s block: 16 16, 32 16 and 64 16. Larger blocks are not ne-
cessary. The two smallest blocks will require sharing A’s ele-



 

 

GPU SP peak, 
Gflop/s 

SGEMM( “N”, “N”, … ) SSYRK( “L”, “N”, … ) DP peak, 
Gflop/s 

DGEMM  DSYRK 

CUBLAS1.1 ours estimate CUBLAS2.0 ours ours CUBLAS2.0 ours 

8600GTS 93 37% 60% 58% 36% 60% — — — — 

8800GTX 346 37% 60% 58% 37% 60% — — — — 

9800GTX 429 36% 58% 58% 36% 58% — — — — 

GTX280 624 44% 60% 58% 45% 60% 78 97% 35% 95% 
Table 2: The estimated and the best observed rates in matrix-matrix multiply routines shown as a fraction of the peak.  

 
 

Vector length: 64 //stripmined into two warps by GPU 
Registers: a, c[1:16] //each is 64-element vector 
Shared memory: b[16][16] //may include padding 
 
Compute pointers in A, B and C using thread ID 
c[1:16] = 0 
do 
    b[1:16][1:16] = next 16 16 block in B or BT 
    local barrier //wait until b[][] is written by all warps 
    unroll for i = 1 to 16 do 
        a = next 64 1 column of A 
        c[1] += a*b[i][1]      // rank-1 update of C’s block 
        c[2] += a*b[i][2]      // data parallelism = 1024 
        c[3] += a*b[i][3]      // stripmined in software 
        …                              // into 16 operations 
        c[16] += a*b[i][16]  // access to b[][] is stride-1 
    endfor 
    local barrier //wait until done using b[][] 
    update pointers in A and B 
repeat until pointer in B is out of range 

      Merge c[1:16] with 64 16 block of C in memory 
 
Figure 4: The structure of our matrix-matrix multiply routines. 

ments among vector elements via shared memory. But this is not 
needed if we choose the 64 16 block. 

The above decisions require sharing B’s block, so it is stored 
in shared memory. Row-major layout is preferred as it yields 
stride-1 accesses to shared memory in the inner loop of the ma-
trix-multiply which is a rank-1 update of C’s block. This layout 
requires transposing B’s block in the AB case and padding the 
shared memory array to avoid the bank conflicts. 

Earlier versions of the code used compiler options to enforce 
a tighter register budget and software prefetching. This was not 
found necessary in the later code.  

The resulting thread program is outlined in Fig. 4. 
We launch as many threads as there are non-zero blocks in 

C. Threads are created with 2D thread IDs as permitted in 
CUDA. When C is triangular, a naïve implementation would be 
to create as many threads as there are blocks in the full matrix 
and require threads corresponding to the zero blocks to exit im-
mediately. This involves the overhead of creating and schedul-
ing ~2× more threads than necessary. A better implementation is 
to cut the block index space of the triangular matrix into left and 
right parts and “glue” them together into a single rectangular 
piece. This requires slightly more sophisticated decoding of the 
2D thread ID into the C’s block index. In a similar fashion we 
programmed a routine that works with submatrices of triangular 
matrices. 

The code is written in CUDA’s C to offload register alloca-
tion and instruction scheduling to the compiler. Decuda was 
used to control compiler’s efficiency. 

We also compiled our codes into double precision by chang-
ing all “floats” into “doubles” and using proper compiler op-
tions. A minor adjustment that we did was keeping the padding 
of the shared memory arrays equal to one 32-bit word. Other-
wise the padding increases producing bank conflicts. 

Although we developed our algorithm independently as an 
optimization over the algorithm given in the CUDA program-
ming manual, we later found that it closely resembles earlier 
algorithms designed for vector processors such as one by Agar-
wal and Gustavson [1989] designed for IBM 3090 Vector Facili-
ty and Anderson et al. [2004] for the Cray X1. As in our algo-
rithm, these implementations keep blocks in A and C in the vec-
tor registers and keep the block in B in other fast memory that is 
shared across different vector elements — scalar registers and 
cache respectively. This similarity in the algorithms highlights 
similarities in the architectures. 

4.2 Performance Results and Analysis 
Table 2 shows the fractions of peak and Figures 5 and 6 show 
the absolute rates achieved in our implementations of matrix-
matrix multiplies. Note, that the best performance over different 
GPUs is the same 58–60% of peak, i.e. it scales linearly with the 
clock rate and the number of cores. This fraction approaches 
66% of the peak that bounds multiply-and-add instructions with 
shared memory operands. All our flops are done in such instruc-
tions. 

The table does not include rates achieved in GEMM in 
CUBLAS 2.0 as it is based on our code and runs at similar rates. 
However, the table implies that SYRK in CUBLAS 2.0 is based 
on the earlier GEMM codes. 

To understand the performance of the algorithm, we perform 
cycle-counting on the disassembler output (decuda). The inner 
loop of the SGEMM program (both AB and ABT cases) has 312 
instructions, 20 of which are memory load instructions and 256 
are multiply-and-adds (MAD) with one operand in shared mem-
ory. Only MADs contribute to the flop count. Assuming that 
multiply-and-adds consume 6 and all other instructions consume 
4 cycles per warp, we get an estimate of 1760 cycles per loop 
body per warp. 256 MADs perform 256*32*2 = 16384 flops per 
warp, which is 58% of the peak value of 1760*8*2 = 28160 
flops that can be done on a single core in this number of cycles. 
58% of peak closely matches the observed rates as listed in Ta-
ble 2. This result implies that performance is bound by the in-
struction throughput and not memory bandwidth or latency. We 
get 61% of peak in a similar estimate if assume that memory 
loads are processed in parallel in a different pipeline. This may 
explain why sustained values are higher than the expected num-
ber. 

If slowdown in accessing shared memory were eliminated 
and MAD ran at full throughput of 4 cycles, a similar estimate 
would give 256/312 = 82% of the compute peak or 88% if 
memory loads were done in parallel. In comparison, we get 89–
92% of peak on Core2 Duo and Quad processors when using 
SGEMM in 64-bit Intel MKL 10.0. 



 

 

CUBLAS 1.1 Our code 

C’s block, where stored  32×32, regs 64×16, regs 

A’s block, where stored 32×32, smem 64×1, regs 

B’s block, where stored 32×32, smem 16×16, smem 

Vector length 512 64 
Scalar registers  
per scalar thread 15 30 

Registers per vector thread 30 KB 7.5 KB 

smem per vector thread 8.3 KB 1.1 KB 

Threads/core, 8800GTX 1 4 

Warps/core, 8800GTX 16 8 

Instructions in inner loop 115 312 

MAD instructions 64 256 

smem-to-register MOVs  32 0 

Expected, % of peak 44% 58% 

Sustained, % of peak 36–44% 58–60% 
Table 3: Details of our code and the code in CUBLAS 1.1. In-
structions counts are for the inner loop only and were obtained 
using decuda. A’s 64×1 blocks are given as defined in the C-

level program. This block size is increased when compiling by 
unrolling the loop and assigning the blocks fetched in different 

iterations to different registers. 
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To understand how multithreading factors into the perfor-
mance we varied the number of threads running simultaneously 
by allocating more shared memory than necessary and checking 
the resulting occupancy using a profiler. The code performed at 
32%, 49%, 58% and 59% of the peak when running 1, 2, 3 and 4 
threads per core resp. on all four GPUs (with non-substantial 
variations). GTX280 allows running up to 8 threads but perfor-
mance didn’t improve after 4 threads. These 4 threads per 
GTX280 core correspond to 25% occupancy. This indicates that 
one should not over-optimize for the occupancy, although ex-
tremely low occupancy may also hurt. 

To highlight the importance of locality in accessing shared 
memory, we also run a version that keeps B’s block in column-
major layout instead of row-major layout. Then the shared 
memory array is scanned at large stride in the inner loop that 
introduces extra 60–70 pointer arithmetic instructions in the loop 
body. Resulting performance was slightly lower, at 53–56% of 
peak. Thus, optimizing the locality in shared memory accesses is 
a valuable technique at least for finer tuning. 

According to Table 2, peak rates in SYRK are nearly the 
same as in GEMM. This is natural, as the same main loop code 
is used in both routines. However, the naïve solution that creates 
2× more threads half of which exit immediately runs at 1.1×  
lower peak rate and at up to 1.7× lower rate for some matrix 
sizes. Thus, although GPUs are known for efficient multithread-
ing, unnecessary thread parallelism may result in a slowdown. 

The double precision versions of these routines run at up to 
95–97% of peak. This is much higher than we could expect in 
single precision and is possible only because double precision 
operations are much slower than other instructions and thus 
consume most of the execution time. 

64 16 blocking yields 25.6  reduction of bandwidth con-
sumption. Thus, 375 Gflop/s achieved on GTX280 corresponds 
to 59 GB/s in reading matrices A and B, which is 46% of the 
peak sustained bandwidth. In contrast, some of the earlier im-
plementations, such as Govindaraju et al. [2006] and Fatahalian 
et al. [2004] are bandwidth-bound. The compute-bound imple-
mentation is due to using large blocks, which was made possible 
by introduction of shared memory into the GPUs architecture. 

Results for modern GPUs include 91 Gflop/s by Ryoo et al. 
[2008] and 97 Gflop/s by Baskaran et al. [2008]. Both are on a 
8800GTX and correspond to 26–28% of the compute peak. This 
is over 2× slower than achieved in our code. They follow tradi-
tional guidelines as those outlined in the CUDA programming 
guide, e.g. use longer vectors, optimize for fewer registers per 
scalar thread, get higher occupancy and use shared memory as 
the primary local storage space. 

4.3 Comparison to CUBLAS 1.1 
Table 3 compares the details of our implementation and the 
implementation in CUBLAS 1.1 as was released in public do-
main by NVIDIA (sgemm_main_gld_hw_na_nb_fulltile rou-
tine). Both implementations perform the same amount of work 
per vector thread computing 1024 elements in matrix C. Band-
width reduction by blocking in CUBLAS's code is 32 which is 
better than 25.6 in our code. Also, CUBLAS’s code uses 2  less 
registers per scalar thread and runs at higher occupancy of 2  
more warps per core. However, it is 1.6  slower. 

Much of this slowdown is due to the poorer instruction mix. 
Both codes use MAD instructions with an operand in shared 
memory. But CUBLAS holds both A’s and B’s blocks in shared 
memory and so must fetch second operand before use. This 
requires one MOV instruction per two MAD instructions and 
results in the small fraction of MADs instructions in the loop 
body — it is 56% versus 82% in our code. 

The poor instruction mix in CUBLAS can be improved by 



 

 

using shorter vectors. In CUBLAS 1024-element blocks in C are 
strip mined at the program level into two 512-element vectors. 
This allows reusing the result of each MOV two times. Strip 
mining down to 64 element vectors instead would allow reusing 
data 1024/64 = 16 times. Finally, if C’s block is 64 16, then the 
data can be reused across an entire row of the block and there is 
no need to stage it via shared memory at all. This is what is done 
in our code. 

However, if we use modeling as in the previous Section, we 
get an estimate of 44% of the peak for the CUBLAS code that is 
substantially higher than 36–37% that it sustains on all GPUs 
earlier than GTX280. This might be due to the insufficient paral-
lelism to hide the memory latency. Although CUBLAS runs 2  
more warps than we do, these warps come in one vector thread 
synchronized with local barriers. These barriers separate memo-
ry accesses and computation, so these two do not overlap. That’s 
not an issue in our code where memory accesses in one thread 
may overlap with computations in several other concurrent 
threads. 

5 Implementation of One-Sided Matrix Factoriza-
tions 
We consider the factorization of matrices that reside in the CPU 
memory in column-major layout, and whose factorizations 
overwrite the original data. The intention is to match the seman-
tics of the LAPACK routines [Anderson et al. 1990]. However, 
for the purpose of this study we restrict our attention to square 
matrices whose dimension is a multiple of the block size used.  

There are three classical bulk-synchronous variants of LU 
factorization — left-looking, right-looking and Crout [Dongarra 
et al. 1998]. We dismiss the left-looking scheme as it does about 
half its flops in triangular solves with a small number of right-
hand sides and so has limited inherent parallelism. We prefer the 
right-looking algorithm to the Crout algorithm because it expos-
es more thread-level parallelism in the calls to matrix-matrix 
multiply. Cholesky and QR factorizations work in the same 
manner — the entire matrix is updated as soon as the next block 
column is available. 

Panel factorization is done on the CPU as done independent-
ly by Barrachina et al. [2008] and Baboulin et al. [2008]. How-
ever, in our implementation triangular solve in Cholesky is also 
done on the CPU. The panel factorization is overlapped with 
computation on the GPU using a look-ahead technique (see e.g. 
Dongarra and Ostrouchov [1990] who call it pipelined updat-
ing). This requires transferring matrix panels from the GPU to 
the CPU memory and back. Overlapping these transfers with 
computation, enabled on the newer GPUs, is left for the future 
work. 

To avoid extra overhead in the transfers, the panels are 
placed into their final output location when transferred to the 
CPU memory. Thus panel factorization produces the final re-
sults for those locations, except for LU factorization, which 
requires pivoting of the entire matrix at each panel factorization, 
which is done on the GPU. The transfer of the triangular matrix 
in the Cholesky factorization is done by transferring a set of 
rectangular blocks that includes the triangular part. The width of 
the blocks is optimized using the performance model presented 
in Section 3.2. 

To avoid the severely penalized strided memory access in 
pivoting on the GPU, the matrix is laid out in the GPU memory 
in row-major order. This involves extra overhead for the trans-
position and applies to LU factorization only. The transposition 
of the square matrix is done in-place by buffering tiles in the on-
chip memory to avoid extra consumption of DRAM. When the 
panel is transferred to the CPU memory and back, it is trans-
posed on the GPU using an additional, smaller, buffer in 

DRAM. Pivoting is done in batches of 64 row interchanges to 
amortize the kernel launch overhead. The pivot indices are 
passed in as function parameters that are accessible in CUDA 
via shared memory. This is to avoid the substantial bandwidth 
requirements in reading the parameters from DRAM. 

The upper triangular part of the output of the panel factori-
zation in the QR algorithm is not needed for the later updates 
and is not transferred back to GPU. The lower triangular part is 
filled in with zeros and a unit diagonal before the transfer to 
create a rectangular matrix, so that it can be multiplied using a 
single matrix-matrix multiply. A similar technique is used in 
ScaLAPACK [Choi et al. 1996]. The same technique is used 
with the small triangular matrix that arises in the panel factoriza-
tion in QR. These fill-ins are done on the CPU to overlap with 
the work on the GPU and avoid paying extra GPU overheads. 

Instead of running triangular solve (TRSM) in the LU de-
composition we run matrix-matrix multiply with the inverse of 
the triangular matrix. The inverse is computed on the CPU. As a 
result, the GPU does no other arithmetic besides matrix-matrix 
multiplies. Unlike other optimizations, this may affect the nu-
merical stability of the algorithm. However, our numerical tests 
so far show no difficulty and in fact the stability of either algo-
rithm depends on the essentially the same assumption, namely 
that L 1 is not too large in norm, since this bounds both pivot 
growth and the accuracy of the triangular solve. In the future we 
might revert to triangular solve when ||L 1|| is too large. 

The block size used is the same as in the matrix multiply 
(64). A larger block size could reduce bandwidth consumption 
and improve performance with large matrices. We address the 
bandwidth consumption using two techniques. 

The first technique is a variant of 2-level blocking (this was 
independently done by Barrachina et al. [2008]). Both levels are 
done in the right-looking manner to use a large number of 
threads in the matrix multiply. A novel tweak is that we switch 
to the coarse blocking level when only half the finer level is 
complete. This avoids updating matrices that have too few block 
columns and so offer little thread parallelism in the matrix mul-
tiplies. Note, that this approach is not a subset of the traditional 
recursive blocking that was used by Barrachina et al. 

A different technique is used in QR factorization, which has 
a different structure of updates. We used autotuning to choose 
the best block size (multiple of 64) at every stage of the algo-
rithm. Each stage is parameterized with a 3-tuple: the size of the 
trailing matrix, the block size used in panel factorization and the 
block size used in the update (same as used in the last panel 
factorization). In the current prototype we measure the runtime 
for every instance of this 3-tuple within the range of interest. 
Dynamic programming is then used to choose the best sequence 
of the block sizes, similarly to [Bischof and Lacroute 1990]. 
Block-triangular matrix multiplies are used wherever possible. 

5.1 LU factorization on two GPUs 
We consider using two GPUs attached to the same workstation. 
We use a column-cyclic layout to distribute the matrix over two 
GPUs. It is convenient, as it does not require communication in 
pivoting, distributes the workload evenly and keeps CPU-GPU 
data transfers simple. For example, transferring all even or odd 
columns of matrix can be done with one call to a CUDA routine, 
but transferring even or odd block columns requires many calls 
and so many transfer overheads. Each GPU holds only its own 
fraction of the matrix (even or odd columns). The exception is 
the updates, which require the transfer of an entire panel to both 
GPUs. The columns that do not belong to the layout are dis-
carded after the update is complete. The structure of the algo-
rithm is same as in the single-GPU case but without 2-level 
blocking as in this case it requires substantial extra space for 
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  Q6850 8800GTX+E6700 GTX280+E6700 

  Gflop/s Gflop/s speedup Gflop/s speedup

LU 73 179 2.5× 309 4.1× 

Cholesky 70 183 2.7× 315 4.4× 

QR 75 192 2.6× 340 4.4× 

SGEMM 88 208 2.4× 375 4.3× 

peak 96 388 4.0× 667 6.9× 
Table 4: Comparison of best Gflop/s rates in the CPU and GPU 
versions and best speedup vs. the CPU-alone versions. SGEMM 

rates for the GPU+CPU systems include GPU rates only. 
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storing the coarser blocks. 

6 Results for Matrix Factorizations 
For the results in this section we used a desktop system based on 
2.67GHz Core2 Duo E6700 equipped with multiple PCIe 1.1 

16 slots. For the results with one or two GeForce 8800GTX we 
used 32-bit Windows XP and CUDA 1.1. For the results with 
GeForce GTX280 we used 64-bit Windows XP and CUDA 2.0. 
CPU-only results were obtained on 3.0GHz Core2 Quad Q6850 
running 64-bit Linux. In all cases the Intel MKL 10.0 library is 
used for factorizations on the CPU. We noted that it runs sub-
stantially slower in 32-bit. All results are in single precision. 

Input and output data are in the pinned CPU memory, which 
provides a compromise between usefulness in applications (that 
are likely to run on the CPU) and performance (slower transfers 
to/from GPU if the data is in pageable memory). The cost of the 
memory allocation is not included in the timings. 

Matrices are padded to an odd multiple of 64 words. This 
helps avoiding anomalous performance drops at some matrix 
sizes. 

The correctness of the algorithms is tested in the following 
way. Input matrix A is synthesized with random entries uniform-
ly distributed in [–1,1] (to guarantee symmetric positive defi-
niteness, A = 0.001 I + XTX is used instead in testing the Cho-
lesky factorization, where X is the random matrix as described 
above and I is the identity matrix). Output factors are multiplied 
and max-norm of its difference with the input matrix is found. 
This measures the backward error in the factorization. We found 
that this error is about the same whether using our GPU-based 
algorithm or the purely CPU-based algorithm in the Intel MKL  
(always within a factor of 2, and within 20% in most cases). The 
variant of the LU factorization that multiplies by the inverses of 
the diagonal blocks of the triangular matrix has shown about 
same accuracy as when running triangular solves on the GPU. 
As an example, the errors as measured above in LU, QR and 
Cholesky at n = 8192 are about 2000 ||A||max, 200 ||A||max and 
17 ||A||max resp., where  = 2–23 is machine epsilon in IEEE 
single precision and ||A||max is the max-norm of A. 

6.1 Summary of Performance 
Fig. 7 shows the Gflop/s rates sustained in the GPU-based ma-
trix factorization routines  and using Core2 Quad alone, and Fig. 
8 details the speedups vs. Core2 Quad. According to the Figure, 
the crossover between the GPU-based and CPU-alone imple-
mentations is around n = 1000 for all but Cholesky run on 
GTX280, which is around n = 600. The best performances are 
summarized in Table 4. It shows that the speedup is nearly the 
same as the speedup in matrix-matrix multiply (SGEMM). 
However, difference in theoretical arithmetic peak rates is sub-
stantially higher highlighting that there are more computational 
resources available than we could harvest. 

Fig. 9 shows the performance of the LU decomposition that 
achieves 538 Gflop/s at n  21,000 by running two GPUs in 
parallel. Note that a single GTX 280 yields higher rates than two 
8800 GTX. See the notes below on scaling. 

6.2 Performance Analysis 
Fig. 10 shows the breakdown of runtime in the LU factorization 
on 8800GTX. The breakdown shows that up to 90% of the run-
time is consumed by computing on the GPU and about of 10% 
of this time overlaps with computing on the CPU. We expect the 
GPU part to be smaller when computing with faster GPUs pro-
ducing better overlap at large matrix sizes. Time spent in the 
CPU-GPU transfers is substantial at small and medium sized 
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matrices and should be improved with the newer PCIe intercon-
nect supported by the newer GPUs and motherboards. Time 
spent in transposing the matrices is not substantial. Individual 
measurements have shown that transpose runs at 25 45 GB/s for 
n > 1000. This variation in bandwidth is due to the moderate 
granularity of this operation. For example, it takes ~7 s to copy 
or transpose a 1024 64 matrix at the peak sustained bandwidth 
of 76 GB/s, which is close to the kernel launch overhead. CPU-
GPU transfers run at 3.0 3.3 GB/s for n > 1000, which ap-
proaches the peak sustained rate. 

Fig. 11 evaluates the impacts of different optimizations used 
when computing on GTX280. The most important optimization 
was using row-major layout on the GPU that nearly doubled the 
performance at large problem sizes. Individual measurements 
have shown that pivoting takes 1 10% of time in the entire 
computation for n > 1500 if done in the row-major layout. In 
that case it achieves 7 25 GB/s of effective bandwidth. When 
using column-major layout, it takes 27 50% of the total time 
and run at 0.3 1.8GB/s, with slower rates for larger matrices. 

A surprisingly large speedup (up to 30%) was obtained by 
performing triangular solve via multiplying by the inverse ma-
trix. Triangular solve with a 64 64 triangular matrix and 8192 
right hand sides runs at 18 Gflop/s on GTX280 when using 
CUBLAS 2.0. It is an order of magnitude slower than the 268 
Gflop/s rate achieved in multiplying a 64 64 matrix by a 
64 8192 matrix that does the same work (this is 134 Gflop/s if 
not counting the redundant work). 

Amortization of kernel launch overhead due to batch pivot-
ing yields 30 100% speedup at n < 1024. Effect of all optimiza-
tions decreases at larger problem sizes, where time is dominated 
by matrix-matrix multiplies. Rates in these multiplies are af-
fected by using 2-level schemes in LU and Cholesky and using 
autotuning to choose block size in QR. These techniques gave 
up to 4 7% speedup and factored in only for n > 4096. 

According to Fig. 9, using two 8800GTX yields only 67% 
improvement in the peak Gflop/s rate. This result corresponds to 
pre-allocating pinned memory in the master CPU thread before 
GPU contexts are created in the child CPU threads. As a result, 
all transfers run at a small fraction of the peak PCIe bandwidth 
as if the memory was not pinned. Higher improvement of 74% 
when using two GTX280 corresponds to allocating pinned 
memory in one of the child CPU threads after the GPU contexts 
are attached. This memory is used to store the CPU’s copy of 
the matrix, i.e. both the input and output data of the routine. This 
allows running transfers at full bandwidth to one of the GPUs. 
There are other reasons for less than ideal scaling, such as extra 
CPU-GPU bandwidth consumption, lack of 2-level blocking and 
not scaling the CPU side of the system. 

6.3 Comparison with Other Work 
The first implementation of the LU factorization using GPUs 
that we know was published by Galoppo et al. [2005] and ran at 
up to ~10 Gflop/s for n = 4000 without pivoting and at ~6 
Gflop/s for n = 3500 with partial pivoting on the older GeForce 
7800. They use a non-blocked algorithm that is bandwidth 
and/or overhead bound. Scaling these numbers with bandwidth 
gives up to 26 Gflop/s on GTX280, an order of magnitude less 
than in our implementation. Our solution works faster due to 
large blocking enabled by shared memory. Our high perfor-
mance when pivoting is enabled by the high-bandwidth access 
to linear address space available on modern GPUs. 

Barrachina et al. [2008] report 50 Gflop/s in LU factoriza-
tion and 41 Gflop/s in Cholesky factorization for n = 5000 using 
CUBLAS 1.0 on GeForce 8800 Ultra. Our implementation 

achieves 2.9  and 3.7  higher speed for LU and Cholesky resp. 
on the slightly slower 8800GTX. This is due to our improved 
matrix-matrix multiply routine and the optimizations evaluated 
above. 

Baboulin et al. [2008] describes implementation of LU and 
QR algorithms that run at up to 55 Gflop/s on Quadro FX5600 
for n  19,000 using CUBLAS 1.0. This GPU has slightly slow-
er memory than 8800GTX and otherwise similar. Their imple-
mentation of Cholesky runs at up to 90 Gflop/s if using 
CUBLAS and approaches 160 Gflop/s if using an early version 
of the matrix multiply described in this paper and offloading 
BLAS1/BLAS2 operations to the CPU. Our implementation 
achieves higher rates due to a deeper performance analysis and 
tuning. 

Castillo et al. [2008] report results for Cholesky factoriza-
tion run on 4-GPU NVIDIA Tesla S870. Each of these GPUs is 
similar to Quadro FX5600 described above. Authors report 180 
Gflop/s on a system at n  10,000. We achieve this performance 
using a single 8800GTX. Their result was later improved to 424 
Gflop/s at n  20,000 by using the matrix multiply routine pre-
sented in this paper [Quintana-Orti et al. 2008]. 

7 Conclusions 
We have presented the fastest (so far) implementations of dense 
LU, QR and Cholesky factorizations running on a single or 
double NVIDIA GPUs. Based on our performance benchmark-
ing and modeling, they attain 80% 90% of the peak speeds 
possible for large matrices. This speed was achieved by careful-
ly choosing optimizations to match the capabilities of the hard-



 

 

ware, including using the CPU in parallel with the GPU to per-
form panel factorizations, which are dominated by BLAS1 and 
BLAS2 operations done faster on the CPU. We also changed the 
LU algorithm to use explicit inverses of diagonal subblocks of 
the L factor, and showed this was both faster than and as numer-
ically stable as the conventional algorithm. 

We also presented detailed benchmarks of the GPU memory 
system, kernel start-up costs, and arithmetic throughput, which 
are important to understanding the limits of performance of 
many algorithms including our own. We highlighted some of the 
optimization guidelines, such as using shorter vectors at the 
program level and using register file as the primary on-chip 
storage space. 

Future work includes designing two-sided factorizations, 
such as in dense eigenvalue problems, one-sided factorizations 
on a GPU cluster and exploring the new performance opportuni-
ties offered by newer generations of GPUs. 

Acknowledgements 
We want to thank NVIDIA for the donated hardware, John 
Nickolls for the detailed discussions on the GPU architecture, 
Sam Williams for the generic discussions on computer architec-
ture, Paul Leventis for discussions on optimizing matrix-matrix 
multiply, Professor Krste Asanovi  for the vector insights into 
the GPU architecture, John Shalf for hints on barrier synchroni-
zation, and Massimilano Fatica and Jon Kuroda for assistance in 
the production of this paper. 

References 
ABTS, D., BATAINEH, A., SCOTT, S., FAANES, G., SCHWARZMEIER, 

J., LUNDBERG, E., JOHNSON, T., BYE, M., AND SCHWOERER, G. 
2007. The Cray BlackWidow: A Highly Scalable Vector Mul-
tiprocessor, SC’07. 

AGARWAL R. C., AND GUSTAVSON, F.G. 1989. Vector and paral-
lel algorithms for Cholesky factorization on IBM 3090, Su-
percomputing’89, 225–233. 

ALVERSON, R., CALLAHAN, D., CUMMINGS, D., KOBLENZ, B., 
PORTERFIELD, A., AND SMITH, B. 1990. The Tera Computer 
System, ICS’90, 1–6. 

AMD. 2006. ATI CTM Guide, version 1.01. 
ANDERSON, E., BAI, Z., DONGARRA, J., GREENBAUM, A., 

MCKENNEY, A., DU CROZ, J., HAMMERLING, S., DEMMEL, J., 
BISCHOF, C., AND SORENSEN, D. 1990. LAPACK: a portable 
linear algebra library for high-performance computers, Super-
computing’90, 2–11. 

ANDERSON, E., BRANDT, M., AND YANG, C. 2004. LINPACK 
Benchmark Optimizations on a Virtual Processor Grid, In 
Cray User Group 2004 Proceedings. 

BABOULIN, M., DONGARRA J., AND TOMOV, S. 2008. Some Issues 
in Dense Linear Algebra for Multicore and Special Purpose 
Architectures, Technical Report UT-CS-08-200, University of 
Tennessee, May 6, 2008 (also LAPACK Working Note 200). 

BARRACHINA, S., CASTILLO, M., IGUAL, F. D., MAYO, R, AND 
QUINTANA-ORTI, E. S. 2008. Solving Dense Linear Systems 
on Graphics Processors, Technical Report ICC 02-02-2008, 
Universidad Jaime I, February 2008. 

BASKARAN, M., BONDHUGULA, U., KRISHNAMOORTHY, S., 
RAMANUJAM, J., ROUNTEV, A., AND SADAYAPPAN, P. 2008. A 
Compiler Framework for Optimization of Affine Loop Nests 
for GPGPUs, ISC’08. 

BISCHOF, C. H., AND LACROUTE, P. G. 1990. An adaptive block-
ing strategy for matrix factorization, in Proceedings of the 
Joint International Conference on Vector and Parallel 
Processing, 210–221. 

CASTILLO, M., CHAN, E., IGUAL, F. D., MAYO, R., QUINTANA-

ORTI, E. S., QUINTANA-ORTI, G., VAN DE GEIJN, R., AND VAN 
ZEE, F. G. 2008. Making Programming Synonymous with 
Programming for Linear Algebra Libraries, FLAME Working 
Note #31. The University of Texas at Austin, Department of 
Computer Sciences. Technical Report TR-08-20, April 17, 
2008. 

CHOI, J., DONGARRA, J. J., OSTROUCHOV, L. S., PETITET, A. P., 
WALKER, D. W., AND WHALEY, R. C. 1996. The Design and 
Implementation of the ScaLAPACK LU, QR, and Cholesky 
Factorization Routines, Scientific Programming 5, 3, 173–184 
(also LAPACK Working Note 80). 

DONGARRA, J.,  DUFF, I. S., SORENSEN, D. C., AND VAN DER 
VORST, H. A. 1998. Numerical Linear Algebra for High-
Performance Computers, SIAM. 

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND DUFF, I. 
1990. A Set of Level 3 Basic Linear Algebra Subprograms, 
ACM Transactions on Mathematical Software 16, 1, 1–17. 

DONGARRA, J., AND OSTROUCHOV, S. 1990. LAPACK Block 
Factorization Algorithms on the Intel iPSC/860, Technical 
Report CS-90-115, University of Tennessee (also LAPACK 
Working Note 24). 

GALOPPO, N., GOVINDARAJU, N. K., HENSON, M., AND 
MANOCHA, D. 2005. LU-GPU: Efficient Algorithms for Solv-
ing Dense Linear Systems on Graphics Hardware, SC’05. 

GOVINDARAJU, N. K., LARSEN, S., GRAY, J., AND MANOCHA, D. 
2006. A Memory Model for Scientific Algorithms on Graphcs 
Processors, SC’06. 

FATAHALIAN, K., SUGERMAN, J., AND HANRAHAN, P. 2004. Un-
derstanding the efficiency of GPU algorithms for matrix-
matrix multiplication, In Graphics Hardware 2004, 133–137. 

HE, B., GOVINDARAJU, N. K., LUO, Q., AND SMITH, B. 2007. Effi-
cient Gather and Scatter Operations on Graphics Processors, 
SC’07. 

HWU, W. W., AND KIRK, D. 2007. ECE 498 AL1: Programming 
Massively Parallel Processors, Lecture Slides, University of 
Illinois, Urbana-Champaign. 

NVIDIA. 2006. NVIDIA GeForce 8800 GPU Architecture 
Overview, Technical Brief, November 2006. 

NVIDIA. 2008a. NVIDIA CUDA Compute Unified Device 
Architecture, Programming Guide, Version 2.0. 

NVIDIA. 2008b. NVIDIA GeForce GTX 200 GPU Architectur-
al Overview, Technical Brief, May 2008. 

QUINTANA-ORTI, G., IGUAL, F. D., QUINTANA-ORTI, E. S., AND 
VAN DE GEIJN, R. 2008. Solving Dense Linear Systems on 
Platforms with Multiple Hardware Accelerators, FLAME 
Working Note #32. The University of Texas at Austin, De-
partment of Computer Sciences. Technical Report TR-08-22. 
May 9, 2008. 

RYOO, S., RODRIGUES, C. I., BAGHSORKHI, S. S., STONE, S. S., 
KIRK, D. B., AND HWU, W. W. 2008. Optimization Principles 
and Application Performance Evaluation of a Multithreaded 
GPU using CUDA, Proceedings of the 13th ACM SIGPLAN 
Symposium on Principles and Practice of Parallel Program-
ming, ACM Press, 2008, 73–82. 

 


